Daemontatox commited on
Commit
b16c29f
·
verified ·
1 Parent(s): 2815257

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +167 -295
README.md CHANGED
@@ -1,328 +1,200 @@
1
  ---
2
- library_name: transformers
3
- license: apache-2.0
4
- datasets:
5
- - HuggingFaceM4/the_cauldron
6
- - HuggingFaceM4/Docmatix
7
- pipeline_tag: image-text-to-text
8
- language:
9
- - en
10
- base_model:
11
- - HuggingFaceTB/SmolLM2-135M-Instruct
12
- - google/siglip-base-patch16-512
13
  ---
14
 
15
- <img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/SmolVLM_256_banner.png" width="800" height="auto" alt="Image description">
16
 
17
- # SmolVLM-256M
18
 
19
- SmolVLM-256M is the smallest multimodal model in the world. It accepts arbitrary sequences of image and text inputs to produce text outputs. It's designed for efficiency. SmolVLM can answer questions about images, describe visual content, or transcribe text. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks. It can run inference on one image with under 1GB of GPU RAM.
20
 
21
- ## Model Summary
22
 
23
- - **Developed by:** Hugging Face 🤗
24
- - **Model type:** Multi-modal model (image+text)
25
- - **Language(s) (NLP):** English
26
- - **License:** Apache 2.0
27
- - **Architecture:** Based on [Idefics3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) (see technical summary)
28
 
29
- ## Resources
30
 
31
- - **Demo:** [SmolVLM-256 Demo](https://huggingface.co/spaces/HuggingFaceTB/SmolVLM-256M-Demo)
32
- - **Blog:** [Blog post](https://huggingface.co/blog/smolvlm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Uses
35
 
36
- SmolVLM can be used for inference on multimodal (image + text) tasks where the input comprises text queries along with one or more images. Text and images can be interleaved arbitrarily, enabling tasks like image captioning, visual question answering, and storytelling based on visual content. The model does not support image generation.
37
-
38
- To fine-tune SmolVLM on a specific task, you can follow [the fine-tuning tutorial](https://github.com/huggingface/smollm/blob/main/vision/finetuning/Smol_VLM_FT.ipynb).
39
-
40
- ### Technical Summary
41
-
42
- SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to the larger SmolVLM 2.2B model:
43
-
44
- - **Image compression:** We introduce a more radical image compression compared to Idefics3 and SmolVLM-2.2B to enable the model to infer faster and use less RAM.
45
- - **Visual Token Encoding:** SmolVLM-256 uses 64 visual tokens to encode image patches of size 512×512. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance.
46
- - **New special tokens:** We added new special tokens to divide the subimages. This allows for more efficient tokenization of the images.
47
- - **Smoller vision encoder:** We went from a 400M parameter siglip vision encoder to a much smaller 93M encoder.
48
- - **Larger image patches:** We are now passing patches of 512x512 to the vision encoder, instead of 384x384 like the larger SmolVLM. This allows the information to be encoded more efficiently.
49
-
50
- More details about the training and architecture are available in our technical report.
51
-
52
- ### How to get started
53
-
54
- You can use transformers to load, infer and fine-tune SmolVLM.
55
-
56
- ```python
57
- import torch
58
- from PIL import Image
59
- from transformers import AutoProcessor, AutoModelForVision2Seq
60
- from transformers.image_utils import load_image
61
-
62
- DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
63
-
64
- # Load images
65
- image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
66
-
67
- # Initialize processor and model
68
- processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-256M-Instruct")
69
- model = AutoModelForVision2Seq.from_pretrained(
70
- "HuggingFaceTB/SmolVLM-256M-Instruct",
71
- torch_dtype=torch.bfloat16,
72
- _attn_implementation="flash_attention_2" if DEVICE == "cuda" else "eager",
73
- ).to(DEVICE)
74
-
75
- # Create input messages
76
- messages = [
77
- {
78
- "role": "user",
79
- "content": [
80
- {"type": "image"},
81
- {"type": "text", "text": "Can you describe this image?"}
82
- ]
83
- },
84
- ]
85
-
86
- # Prepare inputs
87
- prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
88
- inputs = processor(text=prompt, images=[image], return_tensors="pt")
89
- inputs = inputs.to(DEVICE)
90
-
91
- # Generate outputs
92
- generated_ids = model.generate(**inputs, max_new_tokens=500)
93
- generated_texts = processor.batch_decode(
94
- generated_ids,
95
- skip_special_tokens=True,
96
- )
97
-
98
- print(generated_texts[0])
99
- """
100
- Assistant: The image depicts a large, historic statue of liberty, located in New York City. The statue is a green, cylindrical structure with a human figure at the top, holding a torch. The statue is situated on a pedestal that resembles the statue of liberty, which is located on a small island in the middle of a body of water. The water surrounding the island is calm, reflecting the blue sky and the statue.
101
- In the background, there are several tall buildings, including the Empire State Building, which is visible in the distance. These buildings are made of glass and steel, and they are positioned in a grid-like pattern, giving them a modern look. The sky is clear, with a few clouds visible, indicating fair weather.
102
- The statue is surrounded by trees, which are green and appear to be healthy. There are also some small structures, possibly houses or buildings, visible in the distance. The overall scene suggests a peaceful and serene environment, typical of a cityscape.
103
- The image is taken during the daytime, likely during the day of the statue's installation. The lighting is bright, casting a strong shadow on the statue and the water, which enhances the visibility of the statue and the surrounding environment.
104
- To summarize, the image captures a significant historical statue of liberty, situated on a small island in the middle of a body of water, surrounded by trees and buildings. The sky is clear, with a few clouds visible, indicating fair weather. The statue is green and cylindrical, with a human figure holding a torch, and is surrounded by trees, indicating a peaceful and well-maintained environment. The overall scene is one of tranquility and historical significance.
105
- """
106
- ```
107
-
108
- We also provide ONNX weights for the model, which you can run with ONNX Runtime as follows:
109
- <details>
110
-
111
- <summary>Click here to see the sample code</summary>
112
-
113
- ```python
114
- from transformers import AutoConfig, AutoProcessor
115
- from transformers.image_utils import load_image
116
- import onnxruntime
117
- import numpy as np
118
-
119
- # 1. Load models
120
- ## Load config and processor
121
- model_id = "HuggingFaceTB/SmolVLM-256M-Instruct"
122
- config = AutoConfig.from_pretrained(model_id)
123
- processor = AutoProcessor.from_pretrained(model_id)
124
-
125
- ## Load sessions
126
- ## !wget https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct/resolve/main/onnx/vision_encoder.onnx
127
- ## !wget https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct/resolve/main/onnx/embed_tokens.onnx
128
- ## !wget https://huggingface.co/HuggingFaceTB/SmolVLM-256M-Instruct/resolve/main/onnx/decoder_model_merged.onnx
129
- vision_session = onnxruntime.InferenceSession("vision_encoder.onnx")
130
- embed_session = onnxruntime.InferenceSession("embed_tokens.onnx")
131
- decoder_session = onnxruntime.InferenceSession("decoder_model_merged.onnx")
132
-
133
- ## Set config values
134
- num_key_value_heads = config.text_config.num_key_value_heads
135
- head_dim = config.text_config.head_dim
136
- num_hidden_layers = config.text_config.num_hidden_layers
137
- eos_token_id = config.text_config.eos_token_id
138
- image_token_id = config.image_token_id
139
-
140
-
141
- # 2. Prepare inputs
142
- ## Create input messages
143
- messages = [
144
- {
145
- "role": "user",
146
- "content": [
147
- {"type": "image"},
148
- {"type": "text", "text": "Can you describe this image?"}
149
- ]
150
- },
151
- ]
152
-
153
- ## Load image and apply processor
154
- image = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
155
- prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
156
- inputs = processor(text=prompt, images=[image], return_tensors="np")
157
-
158
- ## Prepare decoder inputs
159
- batch_size = inputs['input_ids'].shape[0]
160
- past_key_values = {
161
- f'past_key_values.{layer}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, head_dim], dtype=np.float32)
162
- for layer in range(num_hidden_layers)
163
- for kv in ('key', 'value')
164
- }
165
- image_features = None
166
- input_ids = inputs['input_ids']
167
- attention_mask = inputs['attention_mask']
168
- position_ids = np.cumsum(inputs['attention_mask'], axis=-1)
169
-
170
-
171
- # 3. Generation loop
172
- max_new_tokens = 1024
173
- generated_tokens = np.array([[]], dtype=np.int64)
174
- for i in range(max_new_tokens):
175
- inputs_embeds = embed_session.run(None, {'input_ids': input_ids})[0]
176
-
177
- if image_features is None:
178
- ## Only compute vision features if not already computed
179
- image_features = vision_session.run(
180
- ['image_features'], # List of output names or indices
181
- {
182
- 'pixel_values': inputs['pixel_values'],
183
- 'pixel_attention_mask': inputs['pixel_attention_mask'].astype(np.bool_)
184
- }
185
- )[0]
186
-
187
- ## Merge text and vision embeddings
188
- inputs_embeds[inputs['input_ids'] == image_token_id] = image_features.reshape(-1, image_features.shape[-1])
189
-
190
- logits, *present_key_values = decoder_session.run(None, dict(
191
- inputs_embeds=inputs_embeds,
192
- attention_mask=attention_mask,
193
- position_ids=position_ids,
194
- **past_key_values,
195
- ))
196
-
197
- ## Update values for next generation loop
198
- input_ids = logits[:, -1].argmax(-1, keepdims=True)
199
- attention_mask = np.ones_like(input_ids)
200
- position_ids = position_ids[:, -1:] + 1
201
- for j, key in enumerate(past_key_values):
202
- past_key_values[key] = present_key_values[j]
203
-
204
- generated_tokens = np.concatenate([generated_tokens, input_ids], axis=-1)
205
- if (input_ids == eos_token_id).all():
206
- break
207
-
208
- ## (Optional) Streaming
209
- print(processor.decode(input_ids[0]), end='')
210
- print()
211
-
212
- # 4. Output result
213
- print(processor.batch_decode(generated_tokens))
214
- ```
215
-
216
- Example output:
217
- ```
218
- The image depicts a large, historic statue of Liberty situated on a small island in a body of water. The statue is a green, cylindrical structure with a human figure at the top, which is the actual statue of Liberty. The statue is mounted on a pedestal that is supported by a cylindrical tower. The pedestal is rectangular and appears to be made of stone or a similar material. The statue is surrounded by a large, flat, rectangular area that is likely a base for the statue.
219
-
220
- In the background, there is a cityscape with a variety of buildings, including skyscrapers and high-rise buildings. The sky is clear with a gradient of colors, transitioning from a pale blue at the top to a deeper blue at the bottom. The buildings are mostly modern, with a mix of glass and concrete. The buildings are densely packed, with many skyscrapers and high-rise buildings visible.
221
-
222
- There are trees and greenery visible on the left side of the image, indicating that the statue is located near a park or a park area. The water in the foreground is calm, with small ripples indicating that the statue is in the water.
223
-
224
- The overall scene suggests a peaceful and serene environment, likely a public park or a park area in a city. The statue is likely a representation of liberty, representing the city's commitment to freedom and democracy.
225
-
226
- ### Analysis and Description:
227
-
228
- #### Statue of Liberty:
229
- - **Location**: The statue is located on a small island in a body of water.
230
- - **Statue**: The statue is a green cylindrical structure with a human figure at the top, which is the actual statue of Liberty.
231
- - **Pedestal**: The pedestal is rectangular and supports the statue.
232
- - **Pedestrian**: The pedestal is surrounded by a flat rectangular area.
233
- - **Water**: The water is calm, with small ripples indicating that the statue is in the water.
234
-
235
- #### Cityscape:
236
- - **Buildings**: The buildings are modern, with a mix of glass and concrete.
237
- - **Sky**: The sky is clear with a gradient of colors, transitioning from a pale blue at the top to a deeper blue at the bottom.
238
- - **Trees**: There are trees and greenery visible on the left side of the image, indicating that the statue is located near a park or a park area.
239
-
240
- #### Environment:
241
- - **Water**: The water is calm, with small ripples indicating that the statue is in the water.
242
- - **Sky**: The sky is clear with a gradient of colors, transitioning from a pale blue at the top to a deeper blue at the bottom.
243
-
244
- ### Conclusion:
245
- The image depicts a peaceful and serene public park or park area in a city, with the statue of Liberty prominently featured. The cityscape in the background includes modern buildings and a clear sky, suggesting a well-maintained public space.<end_of_utterance>
246
- ```
247
-
248
- </details>
249
-
250
- ### Model optimizations
251
-
252
- **Precision**: For better performance, load and run the model in half-precision (`torch.bfloat16`) if your hardware supports it.
253
-
254
- ```python
255
- from transformers import AutoModelForVision2Seq
256
- import torch
257
-
258
- model = AutoModelForVision2Seq.from_pretrained(
259
- "HuggingFaceTB/SmolVLM-Instruct",
260
- torch_dtype=torch.bfloat16
261
- ).to("cuda")
262
- ```
263
 
264
- You can also load SmolVLM with 4/8-bit quantization using bitsandbytes, torchao or Quanto. Refer to [this page](https://huggingface.co/docs/transformers/en/main_classes/quantization) for other options.
265
 
266
- ```python
267
- from transformers import AutoModelForVision2Seq, BitsAndBytesConfig
268
- import torch
269
 
270
- quantization_config = BitsAndBytesConfig(load_in_8bit=True)
271
- model = AutoModelForVision2Seq.from_pretrained(
272
- "HuggingFaceTB/SmolVLM-Instruct",
273
- quantization_config=quantization_config,
274
- )
275
- ```
276
 
277
- **Vision Encoder Efficiency**: Adjust the image resolution by setting `size={"longest_edge": N*512}` when initializing the processor, where N is your desired value. The default `N=4` works well, which results in input images of
278
- size 2048×2048. Decreasing N can save GPU memory and is appropriate for lower-resolution images. This is also useful if you want to fine-tune on videos.
279
 
 
280
 
281
- ## Misuse and Out-of-scope Use
282
 
283
- SmolVLM is not intended for high-stakes scenarios or critical decision-making processes that affect an individual's well-being or livelihood. The model may produce content that appears factual but may not be accurate. Misuse includes, but is not limited to:
284
 
285
- - Prohibited Uses:
286
- - Evaluating or scoring individuals (e.g., in employment, education, credit)
287
- - Critical automated decision-making
288
- - Generating unreliable factual content
289
- - Malicious Activities:
290
- - Spam generation
291
- - Disinformation campaigns
292
- - Harassment or abuse
293
- - Unauthorized surveillance
294
 
295
- ### License
296
 
297
- SmolVLM is built upon [SigLIP](https://huggingface.co/google/siglip-base-patch16-512) as image encoder and [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-135M-Instruct) for text decoder part.
298
 
299
- We release the SmolVLM checkpoints under the Apache 2.0 license.
 
 
 
 
 
 
300
 
301
  ## Training Details
302
 
303
  ### Training Data
304
 
305
- The training data comes from [The Cauldron](https://huggingface.co/datasets/HuggingFaceM4/the_cauldron) and [Docmatix](https://huggingface.co/datasets/HuggingFaceM4/Docmatix) datasets, with emphasis on document understanding (25%) and image captioning (18%), while maintaining balanced coverage across other crucial capabilities like visual reasoning, chart comprehension, and general instruction following.
306
- <img src="https://huggingface.co/HuggingFaceTB/SmolVLM-Instruct/resolve/main/mixture_the_cauldron.png" alt="Example Image" style="width:90%;" />
 
 
 
 
 
 
 
 
 
307
 
308
 
 
 
 
 
 
 
 
 
 
309
 
310
  ## Evaluation
311
 
312
- | Size | Mathvista | MMMU | OCRBench | MMStar | AI2D | ChartQA_Test | Science_QA | TextVQA Val | DocVQA Val |
313
- |-------|-----------|------|----------|--------|-------|--------------|------------|-------------|------------|
314
- | 256M | 35.9 | 28.3 | 52.6 | 34.6 | 47 | 55.8 | 73.6 | 49.9 | 58.3 |
315
- | 500M | 40.1 | 33.7 | 61 | 38.3 | 59.5 | 63.2 | 79.7 | 60.5 | 70.5 |
316
- | 2.2B | 43.9 | 38.3 | 65.5 | 41.8 | 64 | 71.6 | 84.5 | 72.1 | 79.7 |
317
-
318
-
319
- # Citation information
320
- You can cite us in the following way:
321
- ```bibtex
322
- @article{marafioti2025smolvlm,
323
- title={SmolVLM: Redefining small and efficient multimodal models},
324
- author={Andrés Marafioti and Orr Zohar and Miquel Farré and Merve Noyan and Elie Bakouch and Pedro Cuenca and Cyril Zakka and Loubna Ben Allal and Anton Lozhkov and Nouamane Tazi and Vaibhav Srivastav and Joshua Lochner and Hugo Larcher and Mathieu Morlon and Lewis Tunstall and Leandro von Werra and Thomas Wolf},
325
- journal={arXiv preprint arXiv:2504.05299},
326
- year={2025}
327
- }
328
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
 
 
 
 
 
 
 
 
5
  ---
6
 
7
+ # Model Card for Model ID
8
 
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
 
13
+ ## Model Details
14
 
15
+ ### Model Description
 
 
 
 
16
 
17
+ <!-- Provide a longer summary of what this model is. -->
18
 
19
+
20
+
21
+ - **Developed by:** [More Information Needed]
22
+ - **Funded by [optional]:** [More Information Needed]
23
+ - **Shared by [optional]:** [More Information Needed]
24
+ - **Model type:** [More Information Needed]
25
+ - **Language(s) (NLP):** [More Information Needed]
26
+ - **License:** [More Information Needed]
27
+ - **Finetuned from model [optional]:** [More Information Needed]
28
+
29
+ ### Model Sources [optional]
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Repository:** [More Information Needed]
34
+ - **Paper [optional]:** [More Information Needed]
35
+ - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
 
39
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
+
41
+ ### Direct Use
42
+
43
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
+
45
+ [More Information Needed]
46
+
47
+ ### Downstream Use [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
 
51
+ [More Information Needed]
 
 
52
 
53
+ ### Out-of-Scope Use
 
 
 
 
 
54
 
55
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
56
 
57
+ [More Information Needed]
58
 
59
+ ## Bias, Risks, and Limitations
60
 
61
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
 
63
+ [More Information Needed]
 
 
 
 
 
 
 
 
64
 
65
+ ### Recommendations
66
 
67
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
 
69
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
+
71
+ ## How to Get Started with the Model
72
+
73
+ Use the code below to get started with the model.
74
+
75
+ [More Information Needed]
76
 
77
  ## Training Details
78
 
79
  ### Training Data
80
 
81
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
+
83
+ [More Information Needed]
84
+
85
+ ### Training Procedure
86
+
87
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
+
89
+ #### Preprocessing [optional]
90
+
91
+ [More Information Needed]
92
 
93
 
94
+ #### Training Hyperparameters
95
+
96
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
+
98
+ #### Speeds, Sizes, Times [optional]
99
+
100
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
+
102
+ [More Information Needed]
103
 
104
  ## Evaluation
105
 
106
+ <!-- This section describes the evaluation protocols and provides the results. -->
107
+
108
+ ### Testing Data, Factors & Metrics
109
+
110
+ #### Testing Data
111
+
112
+ <!-- This should link to a Dataset Card if possible. -->
113
+
114
+ [More Information Needed]
115
+
116
+ #### Factors
117
+
118
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Metrics
123
+
124
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
+
126
+ [More Information Needed]
127
+
128
+ ### Results
129
+
130
+ [More Information Needed]
131
+
132
+ #### Summary
133
+
134
+
135
+
136
+ ## Model Examination [optional]
137
+
138
+ <!-- Relevant interpretability work for the model goes here -->
139
+
140
+ [More Information Needed]
141
+
142
+ ## Environmental Impact
143
+
144
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
+
146
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
+
148
+ - **Hardware Type:** [More Information Needed]
149
+ - **Hours used:** [More Information Needed]
150
+ - **Cloud Provider:** [More Information Needed]
151
+ - **Compute Region:** [More Information Needed]
152
+ - **Carbon Emitted:** [More Information Needed]
153
+
154
+ ## Technical Specifications [optional]
155
+
156
+ ### Model Architecture and Objective
157
+
158
+ [More Information Needed]
159
+
160
+ ### Compute Infrastructure
161
+
162
+ [More Information Needed]
163
+
164
+ #### Hardware
165
+
166
+ [More Information Needed]
167
+
168
+ #### Software
169
+
170
+ [More Information Needed]
171
+
172
+ ## Citation [optional]
173
+
174
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
+
176
+ **BibTeX:**
177
+
178
+ [More Information Needed]
179
+
180
+ **APA:**
181
+
182
+ [More Information Needed]
183
+
184
+ ## Glossary [optional]
185
+
186
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
+
188
+ [More Information Needed]
189
+
190
+ ## More Information [optional]
191
+
192
+ [More Information Needed]
193
+
194
+ ## Model Card Authors [optional]
195
+
196
+ [More Information Needed]
197
+
198
+ ## Model Card Contact
199
+
200
+ [More Information Needed]