Daemontatox commited on
Commit
c13b466
·
verified ·
1 Parent(s): 3278b08

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +187 -37
README.md CHANGED
@@ -1,50 +1,200 @@
 
 
 
 
 
1
 
 
2
 
 
3
 
4
- ---
5
- library_name: transformers
6
- license: other
7
- license_name: nvidia-open-model-license
8
- license_link: >-
9
- https://www.nvidia.com/en-us/agreements/enterprise-software/nvidia-open-model-license/
10
- pipeline_tag: text-generation
11
- language:
12
- - en
13
- tags:
14
- - nvidia
15
- - reasoning
16
- - math
17
- - code
18
- - reinforcement learning
19
- - pytorch
20
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
 
22
- # AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning
23
 
24
- <img src="fig/main_fig.png" alt="main_fig" style="width: 600px; max-width: 100%;" />
25
 
26
- We're thrilled to introduce AceReason-Nemotron-14B, a math and code reasoning model trained entirely through reinforcement learning (RL), starting from the DeepSeek-R1-Distilled-Qwen-14B. It delivers impressive results, achieving 78.6% on AIME 2024 (+8.9%), 67.4% on AIME 2025 (+17.4%), 61.1% on LiveCodeBench v5 (+8%), 54.9% on LiveCodeBench v6 (+7%), and 2024 on Codeforces (+543). We systematically study the RL training process through extensive ablations and propose a simple yet effective approach: first RL training on math-only prompts, then RL training on code-only prompts. Notably, we find that math-only RL not only significantly enhances the performance of strong distilled models on math benchmarks, but also code reasoning tasks. In addition, extended code-only RL further improves code benchmark performance while causing minimal degradation in math results. We find that RL not only elicits the foundational reasoning capabilities acquired during pre-training and supervised fine-tuning (e.g., distillation), but also pushes the limits of the model's reasoning ability, enabling it to solve problems that were previously unsolvable.
27
 
28
- We share our training recipe, training logs in our [technical report](https://arxiv.org/abs/2505.16400).
29
 
30
- ## Results
31
 
32
- We evaluate our model against competitive reasoning models of comparable size within Qwen2.5 and Llama3.1 model family on AIME 2024, AIME 2025, LiveCodeBench v5 (2024/08/01 - 2025/02/01), and LiveCodeBench v6 (2025/02/01-2025/05/01). More evaluation results can be found in our [technical report](https://arxiv.org/abs/2505.16400).
33
 
34
- | **Model** | **AIME 2024<br>(avg@64)** | **AIME 2025<br>(avg@64)** | **LCB v5<br>(avg@8)** | **LCB v6<br>(avg@8)** |
35
- | :---: | :---: | :---: | :---: | :---: |
36
- | <small>QwQ-32B</small> | 79.5 | 65.8 | 63.4 | - |
37
- | <small>DeepSeek-R1-671B</small> | 79.8 | 70.0 | 65.9 | - |
38
- | <small>Llama-Nemotron-Ultra-253B</small> | 80.8 | 72.5 | 66.3 | - |
39
- | <small>o3-mini (medium)</small> | 79.6 | 76.7 | 67.4 | - |
40
- | <small>Light-R1-14B</small> | 74 | 60.2 | 57.9 | 51.5 |
41
- | <small>DeepCoder-14B (32K Inference)</small> | 71 | 56.1 | 57.9 | 50.4 |
42
- | <small>OpenMath-Nemotron-14B</small> | 76.3 | 63.0 | - | - |
43
- | <small>OpenCodeReasoning-Nemotron-14B</small> | - | - | 59.4 | 54.1 |
44
- | <small>Llama-Nemotron-Super-49B-v1</small> | 67.5 | 60.0 | 45.5 | - |
45
- | <small>DeepSeek-R1-Distilled-Qwen-14B</small> | 69.7 | 50.2 | 53.1 | 47.9 |
46
- | <small>DeepSeek-R1-Distilled-Qwen-32B</small> | 72.6 | 54.9 | 57.2 | - |
47
- | [AceReason-Nemotron-14B 🤗](https://huggingface.co/nvidia/AceReason-Nemotron-14B)| 78.6 | 67.4 | 61.1 | 54.9 |
48
 
 
49
 
 
50
 
 
 
1
+ ---
2
+ # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1
3
+ # Doc / guide: https://huggingface.co/docs/hub/model-cards
4
+ {}
5
+ ---
6
 
7
+ # Model Card for Model ID
8
 
9
+ <!-- Provide a quick summary of what the model is/does. -->
10
 
11
+ This modelcard aims to be a base template for new models. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/modelcard_template.md?plain=1).
12
+
13
+ ## Model Details
14
+
15
+ ### Model Description
16
+
17
+ <!-- Provide a longer summary of what this model is. -->
18
+
19
+
20
+
21
+ - **Developed by:** [More Information Needed]
22
+ - **Funded by [optional]:** [More Information Needed]
23
+ - **Shared by [optional]:** [More Information Needed]
24
+ - **Model type:** [More Information Needed]
25
+ - **Language(s) (NLP):** [More Information Needed]
26
+ - **License:** [More Information Needed]
27
+ - **Finetuned from model [optional]:** [More Information Needed]
28
+
29
+ ### Model Sources [optional]
30
+
31
+ <!-- Provide the basic links for the model. -->
32
+
33
+ - **Repository:** [More Information Needed]
34
+ - **Paper [optional]:** [More Information Needed]
35
+ - **Demo [optional]:** [More Information Needed]
36
+
37
+ ## Uses
38
+
39
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
+
41
+ ### Direct Use
42
+
43
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
+
45
+ [More Information Needed]
46
+
47
+ ### Downstream Use [optional]
48
+
49
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
+
51
+ [More Information Needed]
52
+
53
+ ### Out-of-Scope Use
54
+
55
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
+
57
+ [More Information Needed]
58
+
59
+ ## Bias, Risks, and Limitations
60
+
61
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
+
63
+ [More Information Needed]
64
+
65
+ ### Recommendations
66
+
67
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
68
+
69
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
70
+
71
+ ## How to Get Started with the Model
72
+
73
+ Use the code below to get started with the model.
74
+
75
+ [More Information Needed]
76
+
77
+ ## Training Details
78
+
79
+ ### Training Data
80
+
81
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
+
83
+ [More Information Needed]
84
+
85
+ ### Training Procedure
86
+
87
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
+
89
+ #### Preprocessing [optional]
90
+
91
+ [More Information Needed]
92
+
93
+
94
+ #### Training Hyperparameters
95
+
96
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
+
98
+ #### Speeds, Sizes, Times [optional]
99
+
100
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
+
102
+ [More Information Needed]
103
+
104
+ ## Evaluation
105
+
106
+ <!-- This section describes the evaluation protocols and provides the results. -->
107
+
108
+ ### Testing Data, Factors & Metrics
109
+
110
+ #### Testing Data
111
+
112
+ <!-- This should link to a Dataset Card if possible. -->
113
+
114
+ [More Information Needed]
115
+
116
+ #### Factors
117
+
118
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
+
120
+ [More Information Needed]
121
+
122
+ #### Metrics
123
+
124
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
+
126
+ [More Information Needed]
127
+
128
+ ### Results
129
+
130
+ [More Information Needed]
131
+
132
+ #### Summary
133
+
134
+
135
+
136
+ ## Model Examination [optional]
137
+
138
+ <!-- Relevant interpretability work for the model goes here -->
139
+
140
+ [More Information Needed]
141
+
142
+ ## Environmental Impact
143
+
144
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
+
146
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
+
148
+ - **Hardware Type:** [More Information Needed]
149
+ - **Hours used:** [More Information Needed]
150
+ - **Cloud Provider:** [More Information Needed]
151
+ - **Compute Region:** [More Information Needed]
152
+ - **Carbon Emitted:** [More Information Needed]
153
+
154
+ ## Technical Specifications [optional]
155
+
156
+ ### Model Architecture and Objective
157
+
158
+ [More Information Needed]
159
+
160
+ ### Compute Infrastructure
161
+
162
+ [More Information Needed]
163
+
164
+ #### Hardware
165
+
166
+ [More Information Needed]
167
+
168
+ #### Software
169
+
170
+ [More Information Needed]
171
+
172
+ ## Citation [optional]
173
+
174
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
+
176
+ **BibTeX:**
177
+
178
+ [More Information Needed]
179
+
180
+ **APA:**
181
 
182
+ [More Information Needed]
183
 
184
+ ## Glossary [optional]
185
 
186
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
 
188
+ [More Information Needed]
189
 
190
+ ## More Information [optional]
191
 
192
+ [More Information Needed]
193
 
194
+ ## Model Card Authors [optional]
 
 
 
 
 
 
 
 
 
 
 
 
 
195
 
196
+ [More Information Needed]
197
 
198
+ ## Model Card Contact
199
 
200
+ [More Information Needed]