--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-XML-RoBERTa-BIOBERT results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.937247539398077 - name: Recall type: recall value: 0.964689348246179 - name: F1 type: f1 value: 0.9507704738269752 - name: Accuracy type: accuracy value: 0.9773235561218265 --- # NER-finetuning-XML-RoBERTa-BIOBERT This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1065 - Precision: 0.9372 - Recall: 0.9647 - F1: 0.9508 - Accuracy: 0.9773 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1305 | 1.0 | 2447 | 0.1005 | 0.9298 | 0.9680 | 0.9485 | 0.9747 | | 0.0874 | 2.0 | 4894 | 0.0981 | 0.9406 | 0.9711 | 0.9556 | 0.9781 | | 0.0782 | 3.0 | 7341 | 0.1023 | 0.9245 | 0.9577 | 0.9408 | 0.9747 | | 0.0807 | 4.0 | 9788 | 0.1042 | 0.9316 | 0.9567 | 0.9440 | 0.9753 | | 0.0437 | 5.0 | 12235 | 0.1065 | 0.9372 | 0.9647 | 0.9508 | 0.9773 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1