--- library_name: transformers base_model: raulgdp/xml-roberta-large-finetuned-ner tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-XML-RoBERTa-BIOBERT results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9497881598534296 - name: Recall type: recall value: 0.9714235521461615 - name: F1 type: f1 value: 0.9604840343919173 - name: Accuracy type: accuracy value: 0.981362755330252 --- # NER-finetuning-XML-RoBERTa-BIOBERT This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0946 - Precision: 0.9498 - Recall: 0.9714 - F1: 0.9605 - Accuracy: 0.9814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1306 | 1.0 | 1224 | 0.1013 | 0.9299 | 0.9609 | 0.9451 | 0.9735 | | 0.0996 | 2.0 | 2448 | 0.0932 | 0.9383 | 0.9656 | 0.9517 | 0.9777 | | 0.0608 | 3.0 | 3672 | 0.0865 | 0.9493 | 0.9720 | 0.9605 | 0.9813 | | 0.0445 | 4.0 | 4896 | 0.0927 | 0.9531 | 0.9729 | 0.9629 | 0.9819 | | 0.0327 | 5.0 | 6120 | 0.0946 | 0.9498 | 0.9714 | 0.9605 | 0.9814 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.5.0+cu121 - Datasets 3.1.0 - Tokenizers 0.19.1