Criser2013 commited on
Commit
00c7742
·
verified ·
1 Parent(s): f96eadf

End of training

Browse files
Files changed (1) hide show
  1. README.md +18 -18
README.md CHANGED
@@ -25,16 +25,16 @@ model-index:
25
  metrics:
26
  - name: Precision
27
  type: precision
28
- value: 0.937247539398077
29
  - name: Recall
30
  type: recall
31
- value: 0.964689348246179
32
  - name: F1
33
  type: f1
34
- value: 0.9507704738269752
35
  - name: Accuracy
36
  type: accuracy
37
- value: 0.9773235561218265
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -44,11 +44,11 @@ should probably proofread and complete it, then remove this comment. -->
44
 
45
  This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.1065
48
- - Precision: 0.9372
49
- - Recall: 0.9647
50
- - F1: 0.9508
51
- - Accuracy: 0.9773
52
 
53
  ## Model description
54
 
@@ -68,8 +68,8 @@ More information needed
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
- - train_batch_size: 4
72
- - eval_batch_size: 4
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
@@ -77,13 +77,13 @@ The following hyperparameters were used during training:
77
 
78
  ### Training results
79
 
80
- | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
- |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.1305 | 1.0 | 2447 | 0.1005 | 0.9298 | 0.9680 | 0.9485 | 0.9747 |
83
- | 0.0874 | 2.0 | 4894 | 0.0981 | 0.9406 | 0.9711 | 0.9556 | 0.9781 |
84
- | 0.0782 | 3.0 | 7341 | 0.1023 | 0.9245 | 0.9577 | 0.9408 | 0.9747 |
85
- | 0.0807 | 4.0 | 9788 | 0.1042 | 0.9316 | 0.9567 | 0.9440 | 0.9753 |
86
- | 0.0437 | 5.0 | 12235 | 0.1065 | 0.9372 | 0.9647 | 0.9508 | 0.9773 |
87
 
88
 
89
  ### Framework versions
 
25
  metrics:
26
  - name: Precision
27
  type: precision
28
+ value: 0.9497881598534296
29
  - name: Recall
30
  type: recall
31
+ value: 0.9714235521461615
32
  - name: F1
33
  type: f1
34
+ value: 0.9604840343919173
35
  - name: Accuracy
36
  type: accuracy
37
+ value: 0.981362755330252
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
44
 
45
  This model is a fine-tuned version of [raulgdp/xml-roberta-large-finetuned-ner](https://huggingface.co/raulgdp/xml-roberta-large-finetuned-ner) on the biobert_json dataset.
46
  It achieves the following results on the evaluation set:
47
+ - Loss: 0.0946
48
+ - Precision: 0.9498
49
+ - Recall: 0.9714
50
+ - F1: 0.9605
51
+ - Accuracy: 0.9814
52
 
53
  ## Model description
54
 
 
68
 
69
  The following hyperparameters were used during training:
70
  - learning_rate: 2e-05
71
+ - train_batch_size: 8
72
+ - eval_batch_size: 8
73
  - seed: 42
74
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
  - lr_scheduler_type: linear
 
77
 
78
  ### Training results
79
 
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | 0.1306 | 1.0 | 1224 | 0.1013 | 0.9299 | 0.9609 | 0.9451 | 0.9735 |
83
+ | 0.0996 | 2.0 | 2448 | 0.0932 | 0.9383 | 0.9656 | 0.9517 | 0.9777 |
84
+ | 0.0608 | 3.0 | 3672 | 0.0865 | 0.9493 | 0.9720 | 0.9605 | 0.9813 |
85
+ | 0.0445 | 4.0 | 4896 | 0.0927 | 0.9531 | 0.9729 | 0.9629 | 0.9819 |
86
+ | 0.0327 | 5.0 | 6120 | 0.0946 | 0.9498 | 0.9714 | 0.9605 | 0.9814 |
87
 
88
 
89
  ### Framework versions