--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-finetuning-BERT-UNCASED-BIOBERT results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9432138927426685 - name: Recall type: recall value: 0.9667549279199764 - name: F1 type: f1 value: 0.9548393345763614 - name: Accuracy type: accuracy value: 0.976488513830286 --- # NER-finetuning-BERT-UNCASED-BIOBERT This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1163 - Precision: 0.9432 - Recall: 0.9668 - F1: 0.9548 - Accuracy: 0.9765 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4431 | 1.0 | 612 | 0.1173 | 0.9250 | 0.9596 | 0.9420 | 0.9709 | | 0.139 | 2.0 | 1224 | 0.1097 | 0.9276 | 0.9724 | 0.9495 | 0.9728 | | 0.0933 | 3.0 | 1836 | 0.0957 | 0.9451 | 0.9686 | 0.9567 | 0.9776 | | 0.0751 | 4.0 | 2448 | 0.0972 | 0.9392 | 0.9733 | 0.9559 | 0.9771 | | 0.0536 | 5.0 | 3060 | 0.0978 | 0.9445 | 0.9705 | 0.9573 | 0.9770 | | 0.0468 | 6.0 | 3672 | 0.1044 | 0.9427 | 0.9661 | 0.9543 | 0.9766 | | 0.0392 | 7.0 | 4284 | 0.1080 | 0.9396 | 0.9691 | 0.9541 | 0.9765 | | 0.0376 | 8.0 | 4896 | 0.1151 | 0.9390 | 0.9696 | 0.9540 | 0.9761 | | 0.0293 | 9.0 | 5508 | 0.1128 | 0.9429 | 0.9674 | 0.9550 | 0.9766 | | 0.0274 | 10.0 | 6120 | 0.1163 | 0.9432 | 0.9668 | 0.9548 | 0.9765 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0