Upload ONNX model with opset 14
Browse files- README.md +11 -16
- optimization_report.json +2 -2
- upload_info.json +6 -0
README.md
CHANGED
@@ -4,12 +4,10 @@ license: mit
|
|
4 |
tags:
|
5 |
- onnx
|
6 |
- optimum
|
7 |
-
- quantized
|
8 |
-
- none
|
9 |
- text-embedding
|
10 |
- onnxruntime
|
11 |
- opset14
|
12 |
-
-
|
13 |
- gpu
|
14 |
- optimized
|
15 |
datasets:
|
@@ -17,20 +15,19 @@ datasets:
|
|
17 |
pipeline_tag: sentence-similarity
|
18 |
---
|
19 |
|
20 |
-
# gte-multilingual-reranker-base-onnx-op14-opt-gpu
|
21 |
|
22 |
-
This model is
|
23 |
|
24 |
## Model Details
|
25 |
|
26 |
-
- **
|
27 |
- **ONNX Opset**: 14
|
28 |
-
- **Task**:
|
29 |
- **Target Device**: GPU
|
30 |
- **Optimized**: Yes
|
31 |
-
- **Framework**: ONNX Runtime
|
32 |
- **Original Model**: [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base)
|
33 |
-
- **
|
34 |
|
35 |
## Environment and Package Versions
|
36 |
|
@@ -80,14 +77,12 @@ inputs = tokenizer(text, return_tensors="pt")
|
|
80 |
outputs = model(**inputs)
|
81 |
```
|
82 |
|
83 |
-
##
|
84 |
|
85 |
-
This model was
|
86 |
-
The quantization was performed using the Optimum library from Hugging Face with opset 14.
|
87 |
Graph optimization was applied during export, targeting GPU devices.
|
88 |
|
|
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
Quantized models generally offer better inference speed with a slight trade-off in accuracy.
|
93 |
-
This FPnone quantized model should provide significantly faster inference than the original model.
|
|
|
4 |
tags:
|
5 |
- onnx
|
6 |
- optimum
|
|
|
|
|
7 |
- text-embedding
|
8 |
- onnxruntime
|
9 |
- opset14
|
10 |
+
- sentence-similarity
|
11 |
- gpu
|
12 |
- optimized
|
13 |
datasets:
|
|
|
15 |
pipeline_tag: sentence-similarity
|
16 |
---
|
17 |
|
18 |
+
# gte-multilingual-reranker-base-onnx-op14-opt-gpu
|
19 |
|
20 |
+
This model is an ONNX version of [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base) using ONNX opset 14.
|
21 |
|
22 |
## Model Details
|
23 |
|
24 |
+
- **Framework**: ONNX Runtime
|
25 |
- **ONNX Opset**: 14
|
26 |
+
- **Task**: sentence-similarity
|
27 |
- **Target Device**: GPU
|
28 |
- **Optimized**: Yes
|
|
|
29 |
- **Original Model**: [Alibaba-NLP/gte-multilingual-reranker-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-reranker-base)
|
30 |
+
- **Exported On**: 2025-03-27
|
31 |
|
32 |
## Environment and Package Versions
|
33 |
|
|
|
77 |
outputs = model(**inputs)
|
78 |
```
|
79 |
|
80 |
+
## Export Process
|
81 |
|
82 |
+
This model was exported to ONNX format using the Optimum library from Hugging Face with opset 14.
|
|
|
83 |
Graph optimization was applied during export, targeting GPU devices.
|
84 |
|
85 |
+
## Performance
|
86 |
|
87 |
+
ONNX Runtime models generally offer better inference speed compared to native PyTorch models,
|
88 |
+
especially when deployed to production environments.
|
|
|
|
optimization_report.json
CHANGED
@@ -12,7 +12,7 @@
|
|
12 |
},
|
13 |
"failed_optimizations": {},
|
14 |
"model_name": "Alibaba-NLP/gte-multilingual-reranker-base",
|
15 |
-
"task": "
|
16 |
"target_device": "GPU",
|
17 |
-
"timestamp": "2025-03-
|
18 |
}
|
|
|
12 |
},
|
13 |
"failed_optimizations": {},
|
14 |
"model_name": "Alibaba-NLP/gte-multilingual-reranker-base",
|
15 |
+
"task": "sentence-similarity",
|
16 |
"target_device": "GPU",
|
17 |
+
"timestamp": "2025-03-27T17:40:48.059814"
|
18 |
}
|
upload_info.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"hf_repo": "JustJaro/gte-multilingual-reranker-base-onnx-op14-opt-gpu",
|
3 |
+
"upload_date": "2025-03-27T13:50:59.930292",
|
4 |
+
"upload_success": true,
|
5 |
+
"model_url": "https://huggingface.co/JustJaro/gte-multilingual-reranker-base-onnx-op14-opt-gpu"
|
6 |
+
}
|