File size: 19,466 Bytes
9252c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a61639
 
9252c6c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
---
tags:
- gptq
- quantization
- 4bit
- confidentialmind
- text-generation
- apache2.0
- mistral-small-24b
---
# πŸ”₯ Quantized Model: Rombos-LLM-V2.6-Qwen-14b_gptq_g32_4bit πŸ”₯

This is a 4-bit quantized version of [rombodawg/Rombos-LLM-V2.6-Qwen-14b](https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b) model, quantized by [ConfidentialMind.com](https://www.confidentialmind.com) πŸ€–βœ¨  
It leverages the open-source GPTQModel quantization to achieve 4-bit precision with a group size of 128 resulting in a 
smaller, 
faster model with minimal performance degradation.

NOTE: High perplexity, maybe due to MSE. Non-MSE quant either present or coming.

Ran on a single NVIDIA A100 GPU with 80GB of VRAM.

*Note* `batch_size` is set quite high as the model is small, you may need to adjust this to your GPU VRAM.

## Model Details
- **Original Model:** [rombodawg/Rombos-LLM-V2.6-Qwen-14b](https://huggingface.co/rombodawg/Rombos-LLM-V2.6-Qwen-14b)
- **Quantized Model:** Rombos-LLM-V2.6-Qwen-14b_gptq_g32_4bit (this repository)
- **Quantization Method:** GPTQ (4-bit, group size 128)
- **Quantization Library:** [GPTQModel](https://github.com/ModelCloud/GPTQModel/tree/main)
- **Calibration Dataset:** neuralmagic/LLM_compression_calibration (using 1536 samples with seq len 6144)
- **Quantized by:** [ConfidentialMind.com](https://www.confidentialmind.com)

## Usage

```python
from gptqmodel import GPTQModel
from transformers import AutoTokenizer

# Use the local directory or JustJaro/Rombos-LLM-V2.6-Qwen-14b_gptq_g32_4bit after upload
quantized_model_id = "/home/jaro/models/quantized/Rombos-LLM-V2.6-Qwen-14b_gptq_g32_4bit"  # or "JustJaro/Rombos-LLM-V2.6-Qwen-14b_gptq_g32_4bit"
tokenizer = AutoTokenizer.from_pretrained(quantized_model_id)
model = GPTQModel.load(quantized_model_id, device="cuda:0")  # or "cpu"

input_text = "This is a test prompt"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda:0")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Package Versions and Installation Instructions

See pyproject.toml for the exact UV project file. See the [GPTQModel](
https://github.com/ModelCloud/GPTQModel/tree/main) repo for more details. on how to install the package.

Use the provided pyproject.toml:

```bash
uv venv
source venv/bin/activate
uv sync
```

### Environment Variables

```bash
HF_TOKEN=<YOUR_HF_TOKEN>
TOKENIZERS_PARALLELISM="true"
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
```

## Quantization Script
Below is the exact quantize.py script used to generate this model (with the exact versions of the dependencies):

```python
#!/usr/bin/env python3
"""
This script loads a source Hugging Face model and a calibration dataset,
quantizes the model using GPTQModel (with 4-bit precision and group size 128),
saves the quantized model using the Transformers API with safetensors (safe serialization)
under ~/models/quantized/, and then creates/updates a Hugging Face repository (with the
_gptq_g128_4bit suffix) by uploading the model, tokenizer, and an auto-generated README.md.

Usage example:
    python quantize.py --source-model TinyLlama/TinyLlama-1.1B-Chat-v1.0 \
                       --calibration-dataset wikitext/wikitext-2-raw-v1 \
                       --seq-len 1024 --nsamples 256 --hf-token <YOUR_HF_TOKEN>
"""

import os
import shutil
import subprocess
from enum import Enum
from pathlib import Path
from typing import List

import torch
import typer
from datasets import load_dataset
from dotenv import load_dotenv, find_dotenv
from gptqmodel import GPTQModel, QuantizeConfig
from gptqmodel.utils import Perplexity
# For later pushing to the model hub
from huggingface_hub import HfApi
from transformers import AutoTokenizer, PreTrainedTokenizerBase

load_dotenv(find_dotenv())
HF_TOKEN = os.getenv("HF_TOKEN")

app = typer.Typer()

class GroupSize(str, Enum):
    accurate:int = 32
    balanced:int = 64
    fast:int = 128


def get_text_from_example(example: dict) -> str:
    """
    Returns text from a dataset example.
    If the example contains a "text" field, and it is nonempty, that text is used.
    Otherwise, if it has a "messages" field (a list of dicts with a "content" key),
    the function returns the concatenation of all non-empty message contents.
    """
    if "text" in example and example["text"]:
        return example["text"]
    elif "messages" in example:
        contents = [msg.get("content", "").strip() for msg in example["messages"]]
        return " ".join([s for s in contents if s])
    else:
        return ""


def get_calibration_dataset(
    tokenizer: PreTrainedTokenizerBase,
    nsamples: int,
    seqlen: int,
    calibration_dataset: str
    ) -> List[dict]:
    """
    Loads a calibration dataset from the Hugging Face Hub (or from a local file).
    It accepts datasets with a single "text" field (like wikitext)
    or with a "messages" field (as in the Neural Magic LLM Compression Calibration dataset).
    Only examples whose extracted text length is at least 'seqlen' are kept.
    Each chosen example is tokenized (with truncation up to 'seqlen') and returned as a dict.
    """
    ds = None
    try:
        # Attempt to load from HF Hub.
        try:
            if "/" in calibration_dataset:
                parts = calibration_dataset.split("/", 1)
                ds = load_dataset(parts[0], parts[1], split="train")
            else:
                ds = load_dataset(calibration_dataset, split="train")
        except Exception as e:
            print(f"Error loading dataset '{calibration_dataset}' via load_dataset: {e}")
            ds = load_dataset(calibration_dataset, split="train")
            print(f"Loaded calibration dataset from full remote path {calibration_dataset}.")


    except Exception as e:
        print(f"Error loading dataset '{calibration_dataset}' via load_dataset: {e}")
        # Fallback: if the supplied calibration_dataset is a local path, try to load it as JSON-lines.
        if os.path.exists(calibration_dataset):
            try:
                ds = load_dataset("json", data_files=calibration_dataset, split="train")
                print(f"Loaded calibration dataset from local file {calibration_dataset}.")
            except Exception as e2:
                print(f"Error loading local json dataset from '{calibration_dataset}': {e2}")
                return []
        else:
            return []

    print(f"Dataset features: {ds.features}")

    # Filter examples that have at least 80% 'seqlen' of extracted text (wikitext-2-raw-v1 dataset has short examples).
    ds = ds.filter(lambda x: len(get_text_from_example(x)) <= int(seqlen*0.8))
    sample_range = min(nsamples, len(ds))
    calibration_data = []
    for i in range(sample_range):
        example = ds[i]
        text = get_text_from_example(example)
        tokenized = tokenizer(text, truncation=True, max_length=seqlen, return_tensors="pt")
        tokenized = {k: v.squeeze(0) for k, v in tokenized.items()}
        calibration_data.append(tokenized)
    return calibration_data


def calculate_avg_ppl(model, tokenizer):
    """
    Computes the average perplexity on the wikitext-2-raw-v1 train split using GPTQModel's Perplexity utility.
    """
    ppl = Perplexity(
        model=model,
        tokenizer=tokenizer,
        dataset_path="wikitext",
        dataset_name="wikitext-2-raw-v1",
        split="train",
        text_column="text",
    )
    ppl_values = ppl.calculate(n_ctx=512, n_batch=512)
    avg = sum(ppl_values) / len(ppl_values)
    return avg


def get_pinned_package_versions():
    """
    Retrieves pinned package versions using 'uv pip freeze'.
    Returns a dictionary mapping lowercased package names to their versions.
    """
    try:
        result = subprocess.run(["uv", "pip", "freeze"], capture_output=True, text=True, check=True)
        packages_output = result.stdout.strip()
        versions = {}
        for line in packages_output.splitlines():
            if "==" in line:
                package_name, package_version = line.split("==", 1)
                versions[package_name.lower()] = package_version
        return versions
    except subprocess.CalledProcessError as e:
        typer.echo(f"Error running 'uv pip freeze': {e}", err=True)
        return {}
    except FileNotFoundError:
        typer.echo("uv command not found. Make sure uv is installed and in your PATH.", err=True)
        return {}


@app.command()
def main(
    seq_len: int = typer.Option(4096, help="Sequence length for tokenization and calibration."),
    nsamples: int = typer.Option(512, help="Number of samples to use for calibration."),
    source_model: str = typer.Option("rombodawg/Rombos-LLM-V2.6-Qwen-14b",
                                     help="Source model HF repository identifier."),
    calibration_dataset: str = typer.Option("wikitext/wikitext-2-raw-v1",
                                              help="Calibration dataset identifier (in 'dataset/config' format) or local file path."),
    hf_token: str = typer.Option(HF_TOKEN,
                                 help="Hugging Face token for creating/updating your repo."),
    upload_only: bool = typer.Option(False, help="Only upload the quantized model to the Hugging Face Hub."),
    # Allow for 32, 64, 128 only using typer:
    group_size: GroupSize = typer.Option(GroupSize.accurate, help="Group size for quantization accurate: 32, "
                                                                  "balanced: 64, fast: 128. Default: accurate."),
    mse: bool = typer.Option(True, help="Use mse instead of mae for the loss function."),
    size_multi: int = typer.Option(3.5, help="Model size multiplier depends on the source model. Default: 1."),
):
    # Prepare destination directory and model names.
    model_name = source_model.split("/")[-1]
    if not size_multi == 1:
        size_multiplier = size_multi
        size_multiplier_len = size_multiplier / 2
    else:
        size_multiplier = 1
        size_multiplier_len = 1
    nsamples = int(nsamples * size_multiplier)
    seq_len = int(seq_len * size_multiplier_len)
    quantized_model_name = f"{model_name}_gptq_g{int(group_size.value)}_4bit"
    quantized_model_dir = os.path.expanduser(os.path.join("~/models/quantized", quantized_model_name))
    if not upload_only:
        # Remove the directory if it already exists
        if os.path.exists(quantized_model_dir):
            shutil.rmtree(quantized_model_dir)
        # Create directory for quantized model.
        os.makedirs(quantized_model_dir, exist_ok=True)

        typer.echo("Loading tokenizer from source model...")
        tokenizer_obj = AutoTokenizer.from_pretrained(source_model, use_fast=True)

        typer.echo("Loading calibration dataset...")
        typer.echo(f"Calibration dataset: {calibration_dataset}")
        calibration_data = get_calibration_dataset(tokenizer_obj, nsamples, seq_len, calibration_dataset)
        if not calibration_data:
            typer.echo("Calibration dataset is empty. Aborting.", err=True)
            raise typer.Exit(code=1)
        if mse:
            # Fits mistral-small-24b particularly well, as well as the increased damp_percent
            mse = 0.01
            quantize_config = QuantizeConfig(bits=4, group_size=int(group_size.value), damp_percent=0.015, mse=mse)
        else:
            quantize_config = QuantizeConfig(bits=4, group_size=int(group_size.value), damp_percent=0.01)
        device = "cuda:0" if torch.cuda.is_available() else "cpu"
        typer.echo(f"Loading model in {device} mode...")
        model = GPTQModel.load(source_model, quantize_config)

        typer.echo("Quantizing model...")
        group_size_factor = int(128 / int(group_size.value))
        model.quantize(calibration_data, auto_gc=False,
                       batch_size=max(1, int(int((nsamples * 0.1) / group_size_factor) *
                                             int(size_multiplier_len))))
        # Retrieve Hugging Face user info for README generation.
        package_versions = get_pinned_package_versions()
        username = get_my_user(hf_token)

        script_content = self_read_script()

        typer.echo(f"Saving quantized model to {quantized_model_dir} using Transformers safe serialization...")
        try:
            model.save_pretrained(quantized_model_dir)
            tokenizer_obj.save_pretrained(quantized_model_dir)
        except Exception as ex:
            typer.echo(f"Error during saving with safe_serialization: {ex}. Aborting.")
            raise
        typer.echo(f"Model uploaded to Hugging Face repo: {quantized_model_name}")
    else:
        tokenizer_obj = AutoTokenizer.from_pretrained(source_model, use_fast=True)
        package_versions = get_pinned_package_versions()
        username = get_my_user(hf_token)
        script_content = self_read_script()


        device = "cuda:0" if torch.cuda.is_available() else "cpu"
    model = GPTQModel.load(quantized_model_dir, device=device)
    avg_ppl = calculate_avg_ppl(model, tokenizer_obj)
    typer.echo(f"Average perplexity (PPL) on wikitext v2 dataset: {avg_ppl}")
    deps = Path("./pyproject.toml")
    shutil.copy(deps, quantized_model_dir)
    generate_readme(calibration_dataset, nsamples, quantized_model_dir,
                    quantized_model_name, script_content, seq_len, source_model, username, avg_ppl)
    GPTQModel.push_to_hub(quantized_path=quantized_model_dir, private=False, repo_id=quantized_model_name,
                          token=HF_TOKEN)
    typer.echo(f"Model uploaded to Hugging Face repo: {quantized_model_name}")
    demo_input = tokenizer_obj("test is", return_tensors="pt").to(device)
    generated_ids = model.generate(**demo_input)
    output_text = tokenizer_obj.decode(generated_ids[0])
    typer.echo(f"Inference demo output: {output_text}")
    typer.echo(f"Average perplexity (PPL) on calibration dataset: {avg_ppl}")


def self_read_script():
    try:
        script_path = os.path.abspath(__file__)
        with open(script_path, "r") as f:
            script_content = f.read()
    except Exception as e:
        script_content = "Error reading script content: " + str(e)
    return script_content


def get_my_user(hf_token):
    api = HfApi(token=hf_token)
    user_info = api.whoami()
    try:
        username = user_info.get("name") or user_info.get("username")
    except Exception as e:
        typer.echo(f"Error retrieving username from Hugging Face API: {e}. Using default username.")
        username = api.whoami()
    if not username:
        typer.echo("Could not determine your Hugging Face username from the token, defaulting to hard coded username.",
                   err=True)
        username = "JustJaro"
    return username


def generate_readme(calibration_dataset, nsamples, quantized_model_dir,
                    quantized_model_name, script_content, seq_len, source_model, username, avg_ppl):
    readme_content = f"""---
tags:
- gptq
- quantization
- 4bit
- confidentialmind
- text-generation
- apache2.0
- mistral-small-24b
---
# πŸ”₯ Quantized Model: {quantized_model_name} πŸ”₯

This is a 4-bit quantized version of [{source_model}](https://huggingface.co/{source_model}) model, quantized by [ConfidentialMind.com](https://www.confidentialmind.com) πŸ€–βœ¨  
It leverages the open-source GPTQModel quantization to achieve 4-bit precision with a group size of 128 resulting in a 
smaller, 
faster model with minimal performance degradation.

Ran on a single NVIDIA A100 GPU with 80GB of VRAM.

*Note* `batch_size` is set quite high as the model is small, you may need to adjust this to your GPU VRAM.

## Model Details
- **Original Model:** [{source_model}](https://huggingface.co/{source_model})
- **Quantized Model:** {quantized_model_name} (this repository)
- **Quantization Method:** GPTQ (4-bit, group size 128)
- **Quantization Library:** [GPTQModel](https://github.com/ModelCloud/GPTQModel/tree/main)
- **Calibration Dataset:** {calibration_dataset} (using {nsamples} samples with seq len {seq_len})
- **Quantized by:** [ConfidentialMind.com](https://www.confidentialmind.com)

## Usage

```python
from gptqmodel import GPTQModel
from transformers import AutoTokenizer

# Use the local directory or {username}/{quantized_model_name} after upload
quantized_model_id = "{quantized_model_dir}"  # or "{username}/{quantized_model_name}"
tokenizer = AutoTokenizer.from_pretrained(quantized_model_id)
model = GPTQModel.load(quantized_model_id, device="cuda:0")  # or "cpu"

input_text = "This is a test prompt"
inputs = tokenizer(input_text, return_tensors="pt").to("cuda:0")
outputs = model.generate(**inputs)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## Package Versions and Installation Instructions

See pyproject.toml for the exact UV project file. See the [GPTQModel](
https://github.com/ModelCloud/GPTQModel/tree/main) repo for more details. on how to install the package.

Use the provided pyproject.toml:

```bash
uv venv
source venv/bin/activate
uv sync
```

### Environment Variables

```bash
HF_TOKEN=<YOUR_HF_TOKEN>
TOKENIZERS_PARALLELISM="true"
PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True
```

## Quantization Script
Below is the exact quantize.py script used to generate this model (with the exact versions of the dependencies):

```python
{script_content}
```

## Quantization Performance

Average perplexity (PPL) on wikitext v2 dataset: {avg_ppl}

## Disclaimer
This model is for research purposes only. It may inherit limitations and biases from the original model and the quantization process. Please use responsibly and refer to the original model card for more details.

## Contact
For any questions or support, please visit [ConfidentialMind.com](https://www.confidentialmind.com) or contact us directly.

## License
This model inherits the license from the original model. Please refer to the original model card for more details.
Original model card: `{source_model}`

## Author
This model was quantized by [Jaro](https://www.linkedin.com/in/jaroai/)

## Acknowledgements
Quantization performed using the GPTQModel pipeline.

TODO: Add `gptqmodel.utils.eval` integration and auto-generation of eval table.

---
*Generated and quantized using GPTQModel.*
"""
    readme_path = os.path.join(quantized_model_dir, "README.md")
    with open(readme_path, "w") as f:
        f.write(readme_content)
    typer.echo("README.md created with detailed information.")


if __name__ == "__main__":
    app()
```

## Quantization Performance

Average perplexity (PPL) on wikitext v2 dataset: 108.12590932665465

## Disclaimer
This model is for research purposes only. It may inherit limitations and biases from the original model and the quantization process. Please use responsibly and refer to the original model card for more details.

## Contact
For any questions or support, please visit [ConfidentialMind.com](https://www.confidentialmind.com) or contact us directly.

## License
This model inherits the license from the original model. Please refer to the original model card for more details.
Original model card: `rombodawg/Rombos-LLM-V2.6-Qwen-14b`

## Author
This model was quantized by [Jaro](https://www.linkedin.com/in/jaroai/)

## Acknowledgements
Quantization performed using the GPTQModel pipeline.

TODO: Add `gptqmodel.utils.eval` integration and auto-generation of eval table.

---
*Generated and quantized using GPTQModel.*