File size: 1,738 Bytes
fb52007 3d3b614 fb52007 3d3b614 fb52007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: mit
base_model:
- stabilityai/sdxl-turbo
---
# sdxl-turbo-unified-reward-dpo
## Model Summary
This model is trained on sdxl-turbo based on DPO preference data constructed by our [UnifiedReward-7B](https://huggingface.co/CodeGoat24/UnifiedReward-7b) for enhanced image generation quality.
For further details, please refer to the following resources:
- π° Paper: https://arxiv.org/pdf/2503.05236
- πͺ Project Page: https://codegoat24.github.io/UnifiedReward/
- π€ Model Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-models-67c3008148c3a380d15ac63a
- π€ Dataset Collections: https://huggingface.co/collections/CodeGoat24/unifiedreward-training-data-67c300d4fd5eff00fa7f1ede
- π Point of Contact: [Yibin Wang](https://codegoat24.github.io)
### Quick Start
SDXL-Turbo does not make use of `guidance_scale` or `negative_prompt`, we disable it with `guidance_scale=0.0`.
Preferably, the model generates images of size 512x512 but higher image sizes work as well.
A **single step** is enough to generate high quality images.
```py
from diffusers import AutoPipelineForText2Image
import torch
pipe = AutoPipelineForText2Image.from_pretrained("CodeGoat24/sdxl-turbo-unified-reward-dpo", torch_dtype=torch.float16, variant="fp16")
pipe.to("cuda")
prompt = "A cinematic shot of a baby racoon wearing an intricate italian priest robe."
image = pipe(prompt=prompt, num_inference_steps=1, guidance_scale=0.0).images[0]
```
## Citation
```
@article{UnifiedReward,
title={Unified Reward Model for Multimodal Understanding and Generation.},
author={Wang, Yibin and Zang, Yuhang, and Li, Hao and Jin, Cheng and Wang Jiaqi},
journal={arXiv preprint arXiv:2503.05236},
year={2025}
}
``` |