nielsr HF Staff commited on
Commit
4589879
·
verified ·
1 Parent(s): 0cec5b4

Add pipeline tag, library name, and link to code

Browse files

This PR improves the model card by:

- Adding `pipeline_tag: image-text-to-text` to the metadata, ensuring the model can be found under the correct pipeline filter on the Hugging Face Hub.
- Adding `library_name: transformers` to the metadata, which enables the "how to use" widget on the model page.
- Adding an explicit link to the GitHub repository for easier access to the code.

Files changed (1) hide show
  1. README.md +8 -4
README.md CHANGED
@@ -1,10 +1,12 @@
1
  ---
2
- license: apache-2.0
 
3
  datasets:
4
  - Code2Logic/GameQA-140K
5
  - Code2Logic/GameQA-5K
6
- base_model:
7
- - Qwen/Qwen2.5-VL-7B-Instruct
 
8
  ---
9
 
10
  ***This model (GameQA-Qwen2.5-VL-7B) results from training Qwen2.5-VL-7B with GRPO solely on our [GameQA-5K](https://huggingface.co/datasets/Code2Logic/GameQA-5K) (sampled from the full [GameQA-140K](https://huggingface.co/datasets/Gabriel166/GameQA-140K) dataset).***
@@ -23,7 +25,9 @@ It's also found that getting trained on 5k samples from our GameQA dataset can l
23
 
24
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained with a GRPO strategy solely on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
25
 
26
- [[📖 Paper](https://arxiv.org/abs/2505.13886)] [[🤗 GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [[🤗 GameQA-5K Dataset](https://huggingface.co/datasets/Code2Logic/GameQA-5K)] [[🤗 GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [[🤗 GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [[🤗 GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
 
 
27
 
28
  <div align=center><img src="https://raw.githubusercontent.com/tongjingqi/Code2Logic/refs/heads/main/assets/categorized_30_games_images.png"></div>
29
 
 
1
  ---
2
+ base_model:
3
+ - Qwen/Qwen2.5-VL-7B-Instruct
4
  datasets:
5
  - Code2Logic/GameQA-140K
6
  - Code2Logic/GameQA-5K
7
+ license: apache-2.0
8
+ pipeline_tag: image-text-to-text
9
+ library_name: transformers
10
  ---
11
 
12
  ***This model (GameQA-Qwen2.5-VL-7B) results from training Qwen2.5-VL-7B with GRPO solely on our [GameQA-5K](https://huggingface.co/datasets/Code2Logic/GameQA-5K) (sampled from the full [GameQA-140K](https://huggingface.co/datasets/Gabriel166/GameQA-140K) dataset).***
 
25
 
26
  This is the first work, to the best of our knowledge, that leverages ***game code*** to synthesize multimodal reasoning data for ***training*** VLMs. Furthermore, when trained with a GRPO strategy solely on **GameQA** (synthesized via our proposed **Code2Logic** approach), multiple cutting-edge open-source models exhibit significantly enhanced out-of-domain generalization.
27
 
28
+ [[\ud83d\udcd6 Paper](https://arxiv.org/abs/2505.13886)] [[\ud83e\udd17 GameQA-140K Dataset](https://huggingface.co/datasets/Gabriel166/GameQA-140K)] [[\ud83e\udd17 GameQA-5K Dataset](https://huggingface.co/datasets/Code2Logic/GameQA-5K)] [[\ud83e\udd17 GameQA-InternVL3-8B](https://huggingface.co/Code2Logic/GameQA-InternVL3-8B) ] [[\ud83e\udd17 GameQA-Qwen2.5-VL-7B](https://huggingface.co/Code2Logic/GameQA-Qwen2.5-VL-7B)] [[\ud83e\udd17 GameQA-LLaVA-OV-7B](https://huggingface.co/Code2Logic/GameQA-llava-onevision-qwen2-7b-ov-hf) ]
29
+
30
+ Code: https://github.com/tongjingqi/Code2Logic
31
 
32
  <div align=center><img src="https://raw.githubusercontent.com/tongjingqi/Code2Logic/refs/heads/main/assets/categorized_30_games_images.png"></div>
33