Create README.md
Browse filesCreate model card
README.md
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: cc-by-nc-4.0
|
3 |
+
language:
|
4 |
+
- de
|
5 |
+
- frr
|
6 |
+
base_model:
|
7 |
+
- facebook/nllb-200-distilled-600M
|
8 |
+
pipeline_tag: translation
|
9 |
+
---
|
10 |
+
|
11 |
+
# Northern Frisian translation model
|
12 |
+
This is an [NLLB-200-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) model fine-tuned for translating between German and
|
13 |
+
the Northern Frisian dialects of Mooringer Frasch and Wiringhiirder Freesk following [this great blogpost](https://cointegrated.medium.com/a37fc706b865).
|
14 |
+
|
15 |
+
## Data
|
16 |
+
|
17 |
+
1. Mooring <-> German
|
18 |
+
The Mooring dataset for finetuning consisted of 9339 sentence pairs.
|
19 |
+
Most examples (roughly 5100) were taken directly from
|
20 |
+
["Rüm Hart"](https://www.nordfriiskfutuur.eu/fileadmin/Content/Nordfriisk_Futuur/E-Books/N._A._Johannsen__Ruem_hart.pdf)
|
21 |
+
published by the Nordfriisk Instituut. For sentence splitting the python
|
22 |
+
[sentence-splitting library](https://pypi.org/project/sentence-splitter/) was used. The splitting wasn't perfect,
|
23 |
+
especially in cases of direct speech, so that manual re-alignment and further splitting was necessary.
|
24 |
+
Further, the texts about larks from Föögle önj Nordfraschlönj, Marie Tångeberg, 1992 were added, a translation of the
|
25 |
+
story Bulemanns Haus by Theodor Storm, as well as roughly 3000 examples taken from the Frasch Uurdebök,
|
26 |
+
Friesisches Wörterbuch, Neumünster 1988.
|
27 |
+
Finally, a little under 180 very simple self-written examples were used as evaluation data set.
|
28 |
+
|
29 |
+
3. Wiringhiirder <-> German
|
30 |
+
The Wiringhiirder dataset consisted of 7529 sentence pairs taken from the books
|
31 |
+
["Di muon fuon e halie"](https://www.nordfriiskfutuur.eu/fileadmin/Content/Nordfriisk_Futuur/E-Books/Peter_Jensen__Di_muon_fuon_e_halie.pdf)
|
32 |
+
and ["Di tofel"](https://www.nordfriiskfutuur.eu/fileadmin/Content/Nordfriisk_Futuur/E-Books/Peter_Jensen__Di_tofel.pdf)
|
33 |
+
by Peter Jensen published by the Nordfriisk Instituut. Similar measures were taken as for Rüm Hart above.
|
34 |
+
For evaluation sentences were collected from Wikipedia, however the evaluation set remains very small and is barely enough to detect
|
35 |
+
overfitting.
|
36 |
+
|
37 |
+
|
38 |
+
## Usage
|
39 |
+
How to use the model:
|
40 |
+
```python
|
41 |
+
!pip install transformers==4.33
|
42 |
+
|
43 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
|
44 |
+
|
45 |
+
def create_tokenizer_with_new_langs(model_id, new_langs):
|
46 |
+
tokenizer = NllbTokenizer.from_pretrained(model_id)
|
47 |
+
for lang in new_langs:
|
48 |
+
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
|
49 |
+
new_token_id = old_len - 1
|
50 |
+
if new_lang in tokenizer.added_tokens_encoder:
|
51 |
+
new_token_id = tokenizer.added_tokens_encoder[new_lang] - 1
|
52 |
+
tokenizer.lang_code_to_id[new_lang] = new_token_id
|
53 |
+
tokenizer.id_to_lang_code[new_token_id] = new_lang
|
54 |
+
# always move "mask" to the last position
|
55 |
+
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset
|
56 |
+
|
57 |
+
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
|
58 |
+
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
|
59 |
+
if new_lang not in tokenizer._additional_special_tokens:
|
60 |
+
tokenizer._additional_special_tokens.append(new_lang)
|
61 |
+
# clear the added token encoder; otherwise a new token may end up there by mistake
|
62 |
+
tokenizer.added_tokens_encoder = {}
|
63 |
+
tokenizer.added_tokens_decoder = {}
|
64 |
+
|
65 |
+
return tokenizer
|
66 |
+
|
67 |
+
def translate(
|
68 |
+
text,
|
69 |
+
tokenizer,
|
70 |
+
model,
|
71 |
+
src_lang='moo_Latn',
|
72 |
+
tgt_lang='deu_Latn',
|
73 |
+
a=32,
|
74 |
+
b=3,
|
75 |
+
max_input_length=1024,
|
76 |
+
num_beams=4,
|
77 |
+
**kwargs
|
78 |
+
):
|
79 |
+
tokenizer.src_lang = src_lang
|
80 |
+
tokenizer.tgt_lang = tgt_lang
|
81 |
+
inputs = tokenizer(text, return_tensors='pt', padding=True, truncation=True, max_length=max_input_length)
|
82 |
+
result = model.generate(
|
83 |
+
**inputs.to(model.device),
|
84 |
+
forced_bos_token_id=tokenizer.convert_tokens_to_ids(tgt_lang),
|
85 |
+
max_new_tokens=int(a + b * inputs.input_ids.shape[1]),
|
86 |
+
num_beams=num_beams,
|
87 |
+
**kwargs
|
88 |
+
)
|
89 |
+
return tokenizer.batch_decode(result, skip_special_tokens=True)
|
90 |
+
|
91 |
+
path = "CmdCody/nllb-deu-frr"
|
92 |
+
tokenizer = create_tokenizer_with_new_langs(path, ['moo_Latn', 'wir_Latn'])
|
93 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(path)
|
94 |
+
|
95 |
+
translate("Momme booget önj Naibel", tokenizer=tokenizer, model=model)
|
96 |
+
```
|
97 |
+
|
98 |
+
## Training
|
99 |
+
The model was trained in a Google Colab notebook for 4 epochs and a batch size of 16 following the above mentioned blog post with two notable adaptations:
|
100 |
+
1. The data iteration was changed to make sure that the model sees each example in the dataset exactly once per epoch.
|
101 |
+
2. After tokenization and batching the complete data set is shuffled before each epoch so that all translation directions are mixed. However, each batch only contains examples for one direction.
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
Metrics on the evaluation data sets:
|
105 |
+
|
106 |
+
| | Bleu | ChrF++ |
|
107 |
+
|------------|-------|--------|
|
108 |
+
| Moo -> Deu | 55.78 | 70.73 |
|
109 |
+
| Deu -> Moo | 50.19 | 67.76 |
|
110 |
+
| Wir -> Deu | 67.22 | 80.16 |
|
111 |
+
| Deu -> Wir | 42.35 | 61.08 |
|
112 |
+
|
113 |
+
Note: As mentioned above the Wiringhiirder evaluation set is very small and the resulting metrics should not be compared with the Mooring
|
114 |
+
metrics.
|