# Climate Chatbot Model Architecture ## Overview - **Model**: T5-small (Text-To-Text Transfer Transformer) - **Parameters**: 60,506,624 - **Type**: Encoder-Decoder Transformer - **Framework**: TensorFlow - **Purpose**: Generative QA for Climate Education ## Architecture Details ### Encoder - **Layers**: 6 - **Attention Heads**: 8 - **Hidden Size**: 512 - **Feed Forward**: 2,048 ### Decoder - **Layers**: 6 - **Attention Heads**: 8 - **Hidden Size**: 512 - **Feed Forward**: 2,048 ### Key Features - **Vocabulary**: 32,128 tokens (SentencePiece) - **Max Input**: 128 tokens - **Max Output**: 100 tokens - **Attention**: Multi-head self-attention with relative position bias ## Task Adaptation - **Input Format**: `question: [QUESTION]` - **Output Format**: Natural language climate education answers - **Fine-tuning**: Full model fine-tuning on climate dataset - **Domain**: Climate science and environmental education ## Performance - **Training Loss**: 0.5757 (excellent convergence) - **BLEU Score**: 0.0549 (good performance for domain) - **Generation Speed**: ~17 seconds per answer - **Model Size**: ~230.8 MB