Text Classification
Transformers
PyTorch
English
roberta
climate
mpjuhasz commited on
Commit
f62d3f7
·
verified ·
1 Parent(s): fe38c57

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +38 -3
README.md CHANGED
@@ -11,22 +11,57 @@ tags:
11
 
12
  ## National Climate Targets Classifier - Climate Policy Radar
13
 
14
- A multilabel text-classifier trained on the National Climate Targets dataset by Climate Policy Radar.
15
 
 
 
 
 
 
16
 
17
  ## Getting started
18
 
19
 
 
 
20
 
21
- ## Citation information
22
 
23
- [coming soon]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Links
26
  - __Repository__: [coming soon]
27
  - __Paper__: [coming soon]
28
 
29
 
 
 
 
 
30
  ## Authors & Contact
31
  Climate Policy Radar team: Matyas Juhasz, Tina Marchand, Roshan Melwani, Kalyan Dutia, Sarah Goodenough, Harrison Pim, and Henry Franks.
32
 
 
11
 
12
  ## National Climate Targets Classifier - Climate Policy Radar
13
 
14
+ A multi-label text-classifier trained on the National Climate Targets dataset by Climate Policy Radar.
15
 
16
+ Using the [climatebert/distilroberta-base-climate-f](https://huggingface.co/climatebert/distilroberta-base-climate-f) model as a starting point, this classifier is trained on the [ClimatePolicyRadar/national-climate-targets](https://huggingface.co/datasets/ClimatePolicyRadar/national-climate-targets) dataset to predict Net Zero ("NZT")
17
+ , "Reduction" and "Other" targets in a multi-label setting. The training data is an expert annotated subset of national laws, policies and UNFCCC submissions.
18
+
19
+
20
+ For more information on the annotation methodology and classifier training see __our paper TBA__.
21
 
22
  ## Getting started
23
 
24
 
25
+ ```python
26
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
27
 
 
28
 
29
+ model_name = "ClimatePolicyRadar/national-climate-targets"
30
+ example = "The Net Zero Strategy, published in October 2021, was the first "\
31
+ "document of its kind for a major economy. It set out the government’s "\
32
+ "vision for a market-led, technology-driven transition to decarbonise "\
33
+ "the UK economy and reach net zero by 2050."
34
+
35
+
36
+ model = AutoModelForSequenceClassification.from_pretrained(model_name)
37
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
38
+
39
+ # using sigmoid because the model is multi-label
40
+ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, function_to_apply="sigmoid")
41
+
42
+
43
+ pipe(example)
44
+
45
+ >>> [{'label': 'NZT', 'score': 0.9142044186592102}]
46
+ ```
47
+
48
+
49
+ ## Licence
50
+
51
+ Our classifier is licensed as [Apache 2.0](https://www.apache.org/licenses/LICENSE-2.0).
52
+
53
+ Please read our Terms of Use, including any specific terms relevant to commercial use. Contact [email protected] with any questions.
54
+
55
 
56
  ## Links
57
  - __Repository__: [coming soon]
58
  - __Paper__: [coming soon]
59
 
60
 
61
+ ## Citation
62
+
63
+ [coming soon]
64
+
65
  ## Authors & Contact
66
  Climate Policy Radar team: Matyas Juhasz, Tina Marchand, Roshan Melwani, Kalyan Dutia, Sarah Goodenough, Harrison Pim, and Henry Franks.
67