File size: 1,679 Bytes
2472ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80ebfa
 
 
 
 
2472ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80ebfa
 
 
 
 
2472ca7
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: RoBERTa-ner
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# RoBERTa-ner

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0393
- Precision: 0.9106
- Recall: 0.9165
- F1: 0.9136
- Accuracy: 0.9881

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0503        | 1.0   | 5867  | 0.0463          | 0.9036    | 0.9078 | 0.9057 | 0.9866   |
| 0.036         | 2.0   | 11734 | 0.0410          | 0.9126    | 0.9156 | 0.9141 | 0.9876   |
| 0.0254        | 3.0   | 17601 | 0.0413          | 0.9150    | 0.9185 | 0.9168 | 0.9881   |


### Framework versions

- Transformers 4.40.0
- Pytorch 2.2.2
- Datasets 2.19.0
- Tokenizers 0.19.1