root commited on
Commit
2f9eb47
·
1 Parent(s): 92f1fce
.gitattributes CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ model-00003-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
37
+ model-00004-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
38
+ model-00001-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
39
+ model-00002-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "<image>": 151646,
3
+ "<|endoftext|>": 151643,
4
+ "<|im_end|>": 151645,
5
+ "<|im_start|>": 151644
6
+ }
config.json ADDED
@@ -0,0 +1,84 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/damovl/yyq/LongVU/LongVU_Qwen2_7B_cambrian",
3
+ "architectures": [
4
+ "CambrianQwenForCausalLM"
5
+ ],
6
+ "attention_bias": false,
7
+ "attention_dropout": 0.0,
8
+ "bos_token_id": 151643,
9
+ "connect_layer": 2,
10
+ "connector_depth": 3,
11
+ "connector_only": true,
12
+ "dino_threshold": 0.83,
13
+ "drop_threshold": 0.8,
14
+ "eos_token_id": 151645,
15
+ "frame_pos": false,
16
+ "freeze_mm_mlp_adapter": false,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 3584,
19
+ "highres": true,
20
+ "highres_connect": false,
21
+ "image_aspect_ratio": "pad",
22
+ "image_position": 91,
23
+ "image_token_len": 144,
24
+ "initializer_range": 0.02,
25
+ "intermediate_size": 18944,
26
+ "is_image_newline": true,
27
+ "is_st_sampler": false,
28
+ "lowres_token": 8,
29
+ "max_position_embeddings": 32768,
30
+ "max_window_layers": 28,
31
+ "mm_patch_merge_type": "flat",
32
+ "mm_projector_lr": null,
33
+ "mm_projector_type": "sva",
34
+ "mm_use_im_patch_token": false,
35
+ "mm_use_im_start_end": false,
36
+ "mm_vision_sampler_lr": null,
37
+ "mm_vision_select_feature": "patch",
38
+ "mm_vision_select_layer": -2,
39
+ "mm_vision_tower_aux_list": [
40
+ "siglip/CLIP-ViT-SO400M-14-384",
41
+ "facebook/dinov2-giant-res378"
42
+ ],
43
+ "mm_vision_tower_aux_token_len_list": [
44
+ 576,
45
+ 576
46
+ ],
47
+ "mm_vision_tower_lr": null,
48
+ "model_type": "cambrian_qwen",
49
+ "num_attention_heads": 28,
50
+ "num_hidden_layers": 28,
51
+ "num_key_value_heads": 4,
52
+ "num_of_vision_sampler_layers": 10,
53
+ "num_query_group": 1,
54
+ "pretraining_tp": 1,
55
+ "query_num_list": [
56
+ 144
57
+ ],
58
+ "rms_norm_eps": 1e-06,
59
+ "rope_scaling": null,
60
+ "rope_theta": 1000000.0,
61
+ "sliding_window": null,
62
+ "spmd_debug": null,
63
+ "spmd_fsdp_sharding": null,
64
+ "spmd_mesh": null,
65
+ "start_of_vision_sampler_layers": 0,
66
+ "stride_of_vision_sampler_layers": 3,
67
+ "tie_word_embeddings": false,
68
+ "tokenizer_model_max_length": 8192,
69
+ "tokenizer_padding_side": "right",
70
+ "torch_dtype": "bfloat16",
71
+ "transformers_version": "4.42.4",
72
+ "tune_mm_mlp_adapter": false,
73
+ "unfreeze_mm_vision_tower": false,
74
+ "use_cache": false,
75
+ "use_mm_proj": true,
76
+ "use_pos_skipping": false,
77
+ "use_sliding_window": false,
78
+ "vision_hidden_size": 1024,
79
+ "vision_tower_aux_token_len_list": [
80
+ 576,
81
+ 576
82
+ ],
83
+ "vocab_size": 152064
84
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.42.4",
6
+ "use_cache": false
7
+ }
global_step741/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:325e2fbb769ad610c77054b581f5cf9646a9a154331f6f49c3a5dd7c6979e60a
3
+ size 11507505868
global_step741/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6f4404cad0a8269b7ae46ae1be1498e4d0089bd36a4d10e1938b720c645de8ad
3
+ size 11507507340
global_step741/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f8cceec93f4d86c71e83811816d89ca640c26b00f5c1b2d60146a08ca9af828
3
+ size 11507507596
global_step741/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cacda971a2aec5a4c27993dd510fea6720982d839ee548cc441cc9e8a86a401d
3
+ size 11507507660
global_step741/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:79a66d7766df080e4a3a3f44047746a035a172dd3f21de36fb3f4dffe4f6571c
3
+ size 11507507532
global_step741/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd86ba2024c47f32a9131e8e2cf122a08f39cf85946461761e7ed98666f895e6
3
+ size 11507507276
global_step741/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:793f900d3ed81c7613e833f5eb4d29c495acb214d587a58d1961e7d76d79077c
3
+ size 11507508236
global_step741/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f79c2af5cd54201fd335ac408600e49846b2fb27f2aeb5e0f3a9a62bbae097
3
+ size 11507510476
global_step741/mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a48b68883462ce39e68a0f996de693ae8945db58d099a123f5384030c4c9772
3
+ size 15343452856
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step741
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f41f56c10c13c0ece80b71b0916dae6bc7ad24453c0877fc6ec0b043e6bb0734
3
+ size 4877670176
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1b49010db26c2c6e9685e053d0b3036740d862b29ee7ecc966f4af24fbea9ff
3
+ size 4932751008
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9779343f9870a70179123b94010b60f554633af62f0181af94f48cb2ad43d449
3
+ size 4442965440
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9adb0e4104faeac3f634caa80379e85220c25abfb81f0f0eb662a61d34d2495c
3
+ size 1089994880
model.safetensors.index.json ADDED
@@ -0,0 +1,436 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 15343331328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.image_newline": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
20
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
32
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
33
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
44
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
56
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
68
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
80
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
92
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
104
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
116
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
119
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
120
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
123
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
124
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
126
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
135
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
136
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
138
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
140
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
141
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
152
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
164
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
165
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
176
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
188
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
200
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
212
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
224
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
236
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
238
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
248
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
249
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
250
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
251
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
252
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
253
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
255
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
256
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
258
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
260
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
261
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
272
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
284
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
296
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
298
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
299
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
300
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
303
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
304
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
306
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
308
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
309
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
310
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
311
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
312
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
313
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
315
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
316
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
318
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
320
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
321
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
327
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
328
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
330
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
332
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
333
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
344
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
345
+ "model.mm_projector.0.bias": "model-00003-of-00004.safetensors",
346
+ "model.mm_projector.0.weight": "model-00003-of-00004.safetensors",
347
+ "model.mm_projector.2.bias": "model-00003-of-00004.safetensors",
348
+ "model.mm_projector.2.weight": "model-00003-of-00004.safetensors",
349
+ "model.mm_projector_aux_0.0.bias": "model-00003-of-00004.safetensors",
350
+ "model.mm_projector_aux_0.0.weight": "model-00003-of-00004.safetensors",
351
+ "model.mm_projector_aux_0.2.bias": "model-00003-of-00004.safetensors",
352
+ "model.mm_projector_aux_0.2.weight": "model-00003-of-00004.safetensors",
353
+ "model.mm_projector_aux_0.3.bias": "model-00003-of-00004.safetensors",
354
+ "model.mm_projector_aux_0.3.weight": "model-00003-of-00004.safetensors",
355
+ "model.mm_projector_aux_1.0.bias": "model-00003-of-00004.safetensors",
356
+ "model.mm_projector_aux_1.0.weight": "model-00003-of-00004.safetensors",
357
+ "model.mm_projector_aux_1.2.bias": "model-00003-of-00004.safetensors",
358
+ "model.mm_projector_aux_1.2.weight": "model-00003-of-00004.safetensors",
359
+ "model.mm_projector_aux_1.3.bias": "model-00003-of-00004.safetensors",
360
+ "model.mm_projector_aux_1.3.weight": "model-00003-of-00004.safetensors",
361
+ "model.norm.weight": "model-00003-of-00004.safetensors",
362
+ "model.vision_query": "model-00001-of-00004.safetensors",
363
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
364
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
365
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
366
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
367
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
368
+ "model.vision_sampler_0.layers.0.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
369
+ "model.vision_sampler_0.layers.0.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
370
+ "model.vision_sampler_0.layers.0.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
371
+ "model.vision_sampler_0.layers.0.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
372
+ "model.vision_sampler_0.layers.0.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
373
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
374
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
375
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
376
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
377
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
378
+ "model.vision_sampler_0.layers.0.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
379
+ "model.vision_sampler_0.layers.0.norm.bias": "model-00003-of-00004.safetensors",
380
+ "model.vision_sampler_0.layers.0.norm.weight": "model-00003-of-00004.safetensors",
381
+ "model.vision_sampler_0.layers.0.pos_embed_0": "model-00003-of-00004.safetensors",
382
+ "model.vision_sampler_0.layers.0.pos_embed_1": "model-00003-of-00004.safetensors",
383
+ "model.vision_sampler_0.layers.0.proj_context.weight": "model-00003-of-00004.safetensors",
384
+ "model.vision_sampler_0.layers.0.proj_in.weight": "model-00003-of-00004.safetensors",
385
+ "model.vision_sampler_0.layers.0.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
386
+ "model.vision_sampler_0.layers.0.proj_out.linear_2.weight": "model-00003-of-00004.safetensors",
387
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
388
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
389
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
390
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
391
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
392
+ "model.vision_sampler_0.layers.1.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
393
+ "model.vision_sampler_0.layers.1.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
394
+ "model.vision_sampler_0.layers.1.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
395
+ "model.vision_sampler_0.layers.1.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
396
+ "model.vision_sampler_0.layers.1.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
397
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
398
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
399
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
400
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
401
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
402
+ "model.vision_sampler_0.layers.1.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
403
+ "model.vision_sampler_0.layers.1.norm.bias": "model-00003-of-00004.safetensors",
404
+ "model.vision_sampler_0.layers.1.norm.weight": "model-00003-of-00004.safetensors",
405
+ "model.vision_sampler_0.layers.1.pos_embed_0": "model-00003-of-00004.safetensors",
406
+ "model.vision_sampler_0.layers.1.pos_embed_1": "model-00003-of-00004.safetensors",
407
+ "model.vision_sampler_0.layers.1.proj_context.weight": "model-00003-of-00004.safetensors",
408
+ "model.vision_sampler_0.layers.1.proj_in.weight": "model-00003-of-00004.safetensors",
409
+ "model.vision_sampler_0.layers.1.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
410
+ "model.vision_sampler_0.layers.1.proj_out.linear_2.weight": "model-00003-of-00004.safetensors",
411
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
412
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
413
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
414
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
415
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
416
+ "model.vision_sampler_0.layers.2.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
417
+ "model.vision_sampler_0.layers.2.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
418
+ "model.vision_sampler_0.layers.2.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
419
+ "model.vision_sampler_0.layers.2.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
420
+ "model.vision_sampler_0.layers.2.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
421
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
422
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
423
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
424
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
425
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
426
+ "model.vision_sampler_0.layers.2.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
427
+ "model.vision_sampler_0.layers.2.norm.bias": "model-00003-of-00004.safetensors",
428
+ "model.vision_sampler_0.layers.2.norm.weight": "model-00003-of-00004.safetensors",
429
+ "model.vision_sampler_0.layers.2.pos_embed_0": "model-00003-of-00004.safetensors",
430
+ "model.vision_sampler_0.layers.2.pos_embed_1": "model-00003-of-00004.safetensors",
431
+ "model.vision_sampler_0.layers.2.proj_context.weight": "model-00003-of-00004.safetensors",
432
+ "model.vision_sampler_0.layers.2.proj_in.weight": "model-00003-of-00004.safetensors",
433
+ "model.vision_sampler_0.layers.2.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
434
+ "model.vision_sampler_0.layers.2.proj_out.linear_2.weight": "model-00003-of-00004.safetensors"
435
+ }
436
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fadd8eaf8176b5c2f86cb16165e55c152f9fad64e53332ebf9dfbc585ade8600
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>"
5
+ ],
6
+ "eos_token": {
7
+ "content": "<|im_end|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false
12
+ },
13
+ "pad_token": {
14
+ "content": "<|endoftext|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false
19
+ }
20
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<image>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ }
36
+ },
37
+ "additional_special_tokens": [
38
+ "<|im_start|>",
39
+ "<|im_end|>"
40
+ ],
41
+ "bos_token": null,
42
+ "chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
43
+ "clean_up_tokenization_spaces": false,
44
+ "eos_token": "<|im_end|>",
45
+ "errors": "replace",
46
+ "model_max_length": 8192,
47
+ "pad_token": "<|endoftext|>",
48
+ "padding_side": "right",
49
+ "processor_class": "LlavaProcessor",
50
+ "split_special_tokens": false,
51
+ "tokenizer_class": "Qwen2Tokenizer",
52
+ "unk_token": null
53
+ }
trainer_state.json ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 1.0,
5
+ "eval_steps": 5000.0,
6
+ "global_step": 741,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.01349527665317139,
13
+ "grad_norm": 7.016904524087463,
14
+ "learning_rate": 8.695652173913043e-07,
15
+ "loss": 1.1369,
16
+ "step": 10
17
+ },
18
+ {
19
+ "epoch": 0.02699055330634278,
20
+ "grad_norm": 4.2020279077827905,
21
+ "learning_rate": 1.7391304347826085e-06,
22
+ "loss": 1.0452,
23
+ "step": 20
24
+ },
25
+ {
26
+ "epoch": 0.04048582995951417,
27
+ "grad_norm": 3.441796090298099,
28
+ "learning_rate": 1.999530989041473e-06,
29
+ "loss": 0.9533,
30
+ "step": 30
31
+ },
32
+ {
33
+ "epoch": 0.05398110661268556,
34
+ "grad_norm": 3.5191614427600753,
35
+ "learning_rate": 1.9972348515341017e-06,
36
+ "loss": 0.8914,
37
+ "step": 40
38
+ },
39
+ {
40
+ "epoch": 0.06747638326585695,
41
+ "grad_norm": 2.9690875149374367,
42
+ "learning_rate": 1.9930298323185945e-06,
43
+ "loss": 0.8475,
44
+ "step": 50
45
+ },
46
+ {
47
+ "epoch": 0.08097165991902834,
48
+ "grad_norm": 3.0556169559708475,
49
+ "learning_rate": 1.986923980536286e-06,
50
+ "loss": 0.8232,
51
+ "step": 60
52
+ },
53
+ {
54
+ "epoch": 0.09446693657219973,
55
+ "grad_norm": 2.9704481548374653,
56
+ "learning_rate": 1.9789289838540896e-06,
57
+ "loss": 0.822,
58
+ "step": 70
59
+ },
60
+ {
61
+ "epoch": 0.10796221322537113,
62
+ "grad_norm": 2.999043629121677,
63
+ "learning_rate": 1.969060146092264e-06,
64
+ "loss": 0.791,
65
+ "step": 80
66
+ },
67
+ {
68
+ "epoch": 0.1214574898785425,
69
+ "grad_norm": 3.17575389006719,
70
+ "learning_rate": 1.9573363579302263e-06,
71
+ "loss": 0.806,
72
+ "step": 90
73
+ },
74
+ {
75
+ "epoch": 0.1349527665317139,
76
+ "grad_norm": 2.9165449315999563,
77
+ "learning_rate": 1.943780060746493e-06,
78
+ "loss": 0.7961,
79
+ "step": 100
80
+ },
81
+ {
82
+ "epoch": 0.1484480431848853,
83
+ "grad_norm": 2.952637325540401,
84
+ "learning_rate": 1.928417203661959e-06,
85
+ "loss": 0.7962,
86
+ "step": 110
87
+ },
88
+ {
89
+ "epoch": 0.16194331983805668,
90
+ "grad_norm": 3.014781591451641,
91
+ "learning_rate": 1.911277193868751e-06,
92
+ "loss": 0.7781,
93
+ "step": 120
94
+ },
95
+ {
96
+ "epoch": 0.17543859649122806,
97
+ "grad_norm": 2.8796052156819716,
98
+ "learning_rate": 1.8923928403397207e-06,
99
+ "loss": 0.776,
100
+ "step": 130
101
+ },
102
+ {
103
+ "epoch": 0.18893387314439947,
104
+ "grad_norm": 2.8482523150497117,
105
+ "learning_rate": 1.8718002910263424e-06,
106
+ "loss": 0.7615,
107
+ "step": 140
108
+ },
109
+ {
110
+ "epoch": 0.20242914979757085,
111
+ "grad_norm": 2.922903791793236,
112
+ "learning_rate": 1.8495389636652184e-06,
113
+ "loss": 0.7543,
114
+ "step": 150
115
+ },
116
+ {
117
+ "epoch": 0.21592442645074225,
118
+ "grad_norm": 2.9536979340238547,
119
+ "learning_rate": 1.8256514703256447e-06,
120
+ "loss": 0.7598,
121
+ "step": 160
122
+ },
123
+ {
124
+ "epoch": 0.22941970310391363,
125
+ "grad_norm": 3.1334920821882126,
126
+ "learning_rate": 1.8001835358426684e-06,
127
+ "loss": 0.7489,
128
+ "step": 170
129
+ },
130
+ {
131
+ "epoch": 0.242914979757085,
132
+ "grad_norm": 3.2092630967068683,
133
+ "learning_rate": 1.7731839102917642e-06,
134
+ "loss": 0.7551,
135
+ "step": 180
136
+ },
137
+ {
138
+ "epoch": 0.2564102564102564,
139
+ "grad_norm": 2.987735102823792,
140
+ "learning_rate": 1.7447042756726754e-06,
141
+ "loss": 0.7503,
142
+ "step": 190
143
+ },
144
+ {
145
+ "epoch": 0.2699055330634278,
146
+ "grad_norm": 2.979147030983217,
147
+ "learning_rate": 1.7147991469810365e-06,
148
+ "loss": 0.7528,
149
+ "step": 200
150
+ },
151
+ {
152
+ "epoch": 0.2834008097165992,
153
+ "grad_norm": 3.1413426729820904,
154
+ "learning_rate": 1.6835257678571512e-06,
155
+ "loss": 0.7387,
156
+ "step": 210
157
+ },
158
+ {
159
+ "epoch": 0.2968960863697706,
160
+ "grad_norm": 3.1214265634728897,
161
+ "learning_rate": 1.650944001011663e-06,
162
+ "loss": 0.7281,
163
+ "step": 220
164
+ },
165
+ {
166
+ "epoch": 0.31039136302294196,
167
+ "grad_norm": 2.978380133818548,
168
+ "learning_rate": 1.6171162136378713e-06,
169
+ "loss": 0.7514,
170
+ "step": 230
171
+ },
172
+ {
173
+ "epoch": 0.32388663967611336,
174
+ "grad_norm": 2.85376146602686,
175
+ "learning_rate": 1.5821071580300269e-06,
176
+ "loss": 0.7403,
177
+ "step": 240
178
+ },
179
+ {
180
+ "epoch": 0.33738191632928477,
181
+ "grad_norm": 3.1598761470719734,
182
+ "learning_rate": 1.5459838476361322e-06,
183
+ "loss": 0.7435,
184
+ "step": 250
185
+ },
186
+ {
187
+ "epoch": 0.3508771929824561,
188
+ "grad_norm": 2.821356522721463,
189
+ "learning_rate": 1.5088154287824932e-06,
190
+ "loss": 0.7209,
191
+ "step": 260
192
+ },
193
+ {
194
+ "epoch": 0.3643724696356275,
195
+ "grad_norm": 2.98057980294587,
196
+ "learning_rate": 1.4706730483155736e-06,
197
+ "loss": 0.7311,
198
+ "step": 270
199
+ },
200
+ {
201
+ "epoch": 0.37786774628879893,
202
+ "grad_norm": 3.0364233244848364,
203
+ "learning_rate": 1.4316297174145016e-06,
204
+ "loss": 0.7282,
205
+ "step": 280
206
+ },
207
+ {
208
+ "epoch": 0.3913630229419703,
209
+ "grad_norm": 2.949886690990857,
210
+ "learning_rate": 1.391760171834918e-06,
211
+ "loss": 0.7078,
212
+ "step": 290
213
+ },
214
+ {
215
+ "epoch": 0.4048582995951417,
216
+ "grad_norm": 2.9507364249680053,
217
+ "learning_rate": 1.3511407288516878e-06,
218
+ "loss": 0.7201,
219
+ "step": 300
220
+ },
221
+ {
222
+ "epoch": 0.4183535762483131,
223
+ "grad_norm": 2.827650772154331,
224
+ "learning_rate": 1.3098491411743014e-06,
225
+ "loss": 0.7147,
226
+ "step": 310
227
+ },
228
+ {
229
+ "epoch": 0.4318488529014845,
230
+ "grad_norm": 2.8781557252440635,
231
+ "learning_rate": 1.267964448114608e-06,
232
+ "loss": 0.7295,
233
+ "step": 320
234
+ },
235
+ {
236
+ "epoch": 0.44534412955465585,
237
+ "grad_norm": 2.952298995368144,
238
+ "learning_rate": 1.2255668242917648e-06,
239
+ "loss": 0.724,
240
+ "step": 330
241
+ },
242
+ {
243
+ "epoch": 0.45883940620782726,
244
+ "grad_norm": 3.121925726144687,
245
+ "learning_rate": 1.1827374261640126e-06,
246
+ "loss": 0.697,
247
+ "step": 340
248
+ },
249
+ {
250
+ "epoch": 0.47233468286099867,
251
+ "grad_norm": 2.852801476396792,
252
+ "learning_rate": 1.1395582366810346e-06,
253
+ "loss": 0.718,
254
+ "step": 350
255
+ },
256
+ {
257
+ "epoch": 0.48582995951417,
258
+ "grad_norm": 3.0303857364861955,
259
+ "learning_rate": 1.0961119083542726e-06,
260
+ "loss": 0.7197,
261
+ "step": 360
262
+ },
263
+ {
264
+ "epoch": 0.4993252361673414,
265
+ "grad_norm": 3.166667043296761,
266
+ "learning_rate": 1.05248160504558e-06,
267
+ "loss": 0.7091,
268
+ "step": 370
269
+ },
270
+ {
271
+ "epoch": 0.5128205128205128,
272
+ "grad_norm": 2.906467539598673,
273
+ "learning_rate": 1.0087508427770638e-06,
274
+ "loss": 0.6934,
275
+ "step": 380
276
+ },
277
+ {
278
+ "epoch": 0.5263157894736842,
279
+ "grad_norm": 3.02782546633098,
280
+ "learning_rate": 9.650033298668279e-07,
281
+ "loss": 0.7025,
282
+ "step": 390
283
+ },
284
+ {
285
+ "epoch": 0.5398110661268556,
286
+ "grad_norm": 2.8912523592077637,
287
+ "learning_rate": 9.213228066966326e-07,
288
+ "loss": 0.7033,
289
+ "step": 400
290
+ },
291
+ {
292
+ "epoch": 0.553306342780027,
293
+ "grad_norm": 2.82347772754047,
294
+ "learning_rate": 8.777928854181709e-07,
295
+ "loss": 0.7,
296
+ "step": 410
297
+ },
298
+ {
299
+ "epoch": 0.5668016194331984,
300
+ "grad_norm": 2.9229669660658293,
301
+ "learning_rate": 8.344968899048091e-07,
302
+ "loss": 0.7022,
303
+ "step": 420
304
+ },
305
+ {
306
+ "epoch": 0.5802968960863698,
307
+ "grad_norm": 3.1576009691196707,
308
+ "learning_rate": 7.915176962551347e-07,
309
+ "loss": 0.7037,
310
+ "step": 430
311
+ },
312
+ {
313
+ "epoch": 0.5937921727395412,
314
+ "grad_norm": 3.1084612640931173,
315
+ "learning_rate": 7.489375741536281e-07,
316
+ "loss": 0.7073,
317
+ "step": 440
318
+ },
319
+ {
320
+ "epoch": 0.6072874493927125,
321
+ "grad_norm": 2.9866909336253595,
322
+ "learning_rate": 7.068380293921141e-07,
323
+ "loss": 0.6877,
324
+ "step": 450
325
+ },
326
+ {
327
+ "epoch": 0.6207827260458839,
328
+ "grad_norm": 2.8444556383038053,
329
+ "learning_rate": 6.652996478534394e-07,
330
+ "loss": 0.6996,
331
+ "step": 460
332
+ },
333
+ {
334
+ "epoch": 0.6342780026990553,
335
+ "grad_norm": 3.073223609545424,
336
+ "learning_rate": 6.244019412560143e-07,
337
+ "loss": 0.6941,
338
+ "step": 470
339
+ },
340
+ {
341
+ "epoch": 0.6477732793522267,
342
+ "grad_norm": 2.8831703732503753,
343
+ "learning_rate": 5.842231949544962e-07,
344
+ "loss": 0.7049,
345
+ "step": 480
346
+ },
347
+ {
348
+ "epoch": 0.6612685560053981,
349
+ "grad_norm": 3.060533732204664,
350
+ "learning_rate": 5.448403180879439e-07,
351
+ "loss": 0.679,
352
+ "step": 490
353
+ },
354
+ {
355
+ "epoch": 0.6747638326585695,
356
+ "grad_norm": 2.9803982323010585,
357
+ "learning_rate": 5.063286963622902e-07,
358
+ "loss": 0.6972,
359
+ "step": 500
360
+ },
361
+ {
362
+ "epoch": 0.6882591093117408,
363
+ "grad_norm": 2.8648873659535794,
364
+ "learning_rate": 4.687620477489337e-07,
365
+ "loss": 0.6894,
366
+ "step": 510
367
+ },
368
+ {
369
+ "epoch": 0.7017543859649122,
370
+ "grad_norm": 2.8594131054352054,
371
+ "learning_rate": 4.3221228137566223e-07,
372
+ "loss": 0.6984,
373
+ "step": 520
374
+ },
375
+ {
376
+ "epoch": 0.7152496626180836,
377
+ "grad_norm": 2.826483265916211,
378
+ "learning_rate": 3.9674935988002325e-07,
379
+ "loss": 0.6806,
380
+ "step": 530
381
+ },
382
+ {
383
+ "epoch": 0.728744939271255,
384
+ "grad_norm": 3.0466631136136875,
385
+ "learning_rate": 3.624411654886108e-07,
386
+ "loss": 0.7028,
387
+ "step": 540
388
+ },
389
+ {
390
+ "epoch": 0.7422402159244265,
391
+ "grad_norm": 2.8395840111896806,
392
+ "learning_rate": 3.293533700786286e-07,
393
+ "loss": 0.6966,
394
+ "step": 550
395
+ },
396
+ {
397
+ "epoch": 0.7557354925775979,
398
+ "grad_norm": 2.9054816392819154,
399
+ "learning_rate": 2.975493094704435e-07,
400
+ "loss": 0.6908,
401
+ "step": 560
402
+ },
403
+ {
404
+ "epoch": 0.7692307692307693,
405
+ "grad_norm": 2.9460246471571345,
406
+ "learning_rate": 2.670898621917629e-07,
407
+ "loss": 0.6947,
408
+ "step": 570
409
+ },
410
+ {
411
+ "epoch": 0.7827260458839406,
412
+ "grad_norm": 2.941971675288718,
413
+ "learning_rate": 2.3803333294549644e-07,
414
+ "loss": 0.6795,
415
+ "step": 580
416
+ },
417
+ {
418
+ "epoch": 0.796221322537112,
419
+ "grad_norm": 3.0680540747802527,
420
+ "learning_rate": 2.104353410043712e-07,
421
+ "loss": 0.6743,
422
+ "step": 590
423
+ },
424
+ {
425
+ "epoch": 0.8097165991902834,
426
+ "grad_norm": 3.1007189679330374,
427
+ "learning_rate": 1.843487137459261e-07,
428
+ "loss": 0.6941,
429
+ "step": 600
430
+ },
431
+ {
432
+ "epoch": 0.8232118758434548,
433
+ "grad_norm": 2.8712948349597625,
434
+ "learning_rate": 1.598233855316856e-07,
435
+ "loss": 0.6827,
436
+ "step": 610
437
+ },
438
+ {
439
+ "epoch": 0.8367071524966262,
440
+ "grad_norm": 3.028709196939323,
441
+ "learning_rate": 1.369063021240665e-07,
442
+ "loss": 0.7058,
443
+ "step": 620
444
+ },
445
+ {
446
+ "epoch": 0.8502024291497976,
447
+ "grad_norm": 2.8663884949478655,
448
+ "learning_rate": 1.1564133082398942e-07,
449
+ "loss": 0.6926,
450
+ "step": 630
451
+ },
452
+ {
453
+ "epoch": 0.863697705802969,
454
+ "grad_norm": 2.7965685313183983,
455
+ "learning_rate": 9.606917650120083e-08,
456
+ "loss": 0.6902,
457
+ "step": 640
458
+ },
459
+ {
460
+ "epoch": 0.8771929824561403,
461
+ "grad_norm": 2.9702187500416426,
462
+ "learning_rate": 7.822730367804331e-08,
463
+ "loss": 0.6809,
464
+ "step": 650
465
+ },
466
+ {
467
+ "epoch": 0.8906882591093117,
468
+ "grad_norm": 2.9740711603347534,
469
+ "learning_rate": 6.214986481581364e-08,
470
+ "loss": 0.6846,
471
+ "step": 660
472
+ },
473
+ {
474
+ "epoch": 0.9041835357624831,
475
+ "grad_norm": 3.108653359820244,
476
+ "learning_rate": 4.786763494098689e-08,
477
+ "loss": 0.6845,
478
+ "step": 670
479
+ },
480
+ {
481
+ "epoch": 0.9176788124156545,
482
+ "grad_norm": 3.0730509775220005,
483
+ "learning_rate": 3.540795273643926e-08,
484
+ "loss": 0.6942,
485
+ "step": 680
486
+ },
487
+ {
488
+ "epoch": 0.9311740890688259,
489
+ "grad_norm": 2.8851954067191885,
490
+ "learning_rate": 2.479466821043419e-08,
491
+ "loss": 0.6858,
492
+ "step": 690
493
+ },
494
+ {
495
+ "epoch": 0.9446693657219973,
496
+ "grad_norm": 2.7753430457192816,
497
+ "learning_rate": 1.604809704353949e-08,
498
+ "loss": 0.6911,
499
+ "step": 700
500
+ },
501
+ {
502
+ "epoch": 0.9581646423751687,
503
+ "grad_norm": 2.894348481910036,
504
+ "learning_rate": 9.184981700866346e-09,
505
+ "loss": 0.6892,
506
+ "step": 710
507
+ },
508
+ {
509
+ "epoch": 0.97165991902834,
510
+ "grad_norm": 2.9242281390477505,
511
+ "learning_rate": 4.218459384065953e-09,
512
+ "loss": 0.6878,
513
+ "step": 720
514
+ },
515
+ {
516
+ "epoch": 0.9851551956815114,
517
+ "grad_norm": 3.0382180715715568,
518
+ "learning_rate": 1.1580368844316125e-09,
519
+ "loss": 0.6897,
520
+ "step": 730
521
+ },
522
+ {
523
+ "epoch": 0.9986504723346828,
524
+ "grad_norm": 3.0414366034886235,
525
+ "learning_rate": 9.572385238243441e-12,
526
+ "loss": 0.6865,
527
+ "step": 740
528
+ }
529
+ ],
530
+ "logging_steps": 10,
531
+ "max_steps": 741,
532
+ "num_input_tokens_seen": 0,
533
+ "num_train_epochs": 1,
534
+ "save_steps": 350,
535
+ "stateful_callbacks": {
536
+ "TrainerControl": {
537
+ "args": {
538
+ "should_epoch_stop": false,
539
+ "should_evaluate": false,
540
+ "should_log": false,
541
+ "should_save": true,
542
+ "should_training_stop": true
543
+ },
544
+ "attributes": {}
545
+ }
546
+ },
547
+ "total_flos": 8.306076234857578e+18,
548
+ "train_batch_size": 1,
549
+ "trial_name": null,
550
+ "trial_params": null
551
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2972accc9d738f819604a83095fbac9d0518b360b7d97ed2b4ef2f45dc082894
3
+ size 6776
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,587 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
215
+ elif zero_stage == 3:
216
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
217
+
218
+
219
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
220
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
221
+ return
222
+
223
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
224
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
225
+
226
+ if debug:
227
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
228
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
229
+
230
+ wanted_params = len(frozen_param_shapes)
231
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
232
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
233
+ print(f'Frozen params: Have {avail_numel} numels to process.')
234
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
235
+
236
+ total_params = 0
237
+ total_numel = 0
238
+ for name, shape in frozen_param_shapes.items():
239
+ total_params += 1
240
+ unpartitioned_numel = shape.numel()
241
+ total_numel += unpartitioned_numel
242
+
243
+ state_dict[name] = frozen_param_fragments[name]
244
+
245
+ if debug:
246
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
247
+
248
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
249
+
250
+
251
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
252
+ param_shapes = zero_model_states[0].param_shapes
253
+
254
+ # Reconstruction protocol:
255
+ #
256
+ # XXX: document this
257
+
258
+ if debug:
259
+ for i in range(world_size):
260
+ for j in range(len(fp32_flat_groups[0])):
261
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
262
+
263
+ # XXX: memory usage doubles here (zero2)
264
+ num_param_groups = len(fp32_flat_groups[0])
265
+ merged_single_partition_of_fp32_groups = []
266
+ for i in range(num_param_groups):
267
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
268
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
269
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
270
+ avail_numel = sum(
271
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
272
+
273
+ if debug:
274
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
275
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
276
+ # not asserting if there is a mismatch due to possible padding
277
+ print(f"Have {avail_numel} numels to process.")
278
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
279
+
280
+ # params
281
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
282
+ # out-of-core computing solution
283
+ total_numel = 0
284
+ total_params = 0
285
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
286
+ offset = 0
287
+ avail_numel = full_single_fp32_vector.numel()
288
+ for name, shape in shapes.items():
289
+
290
+ unpartitioned_numel = shape.numel()
291
+ total_numel += unpartitioned_numel
292
+ total_params += 1
293
+
294
+ if debug:
295
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
296
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
297
+ offset += unpartitioned_numel
298
+
299
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
300
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
301
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
302
+ # live optimizer object, so we are checking that the numbers are within the right range
303
+ align_to = 2 * world_size
304
+
305
+ def zero2_align(x):
306
+ return align_to * math.ceil(x / align_to)
307
+
308
+ if debug:
309
+ print(f"original offset={offset}, avail_numel={avail_numel}")
310
+
311
+ offset = zero2_align(offset)
312
+ avail_numel = zero2_align(avail_numel)
313
+
314
+ if debug:
315
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
316
+
317
+ # Sanity check
318
+ if offset != avail_numel:
319
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
320
+
321
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
322
+
323
+
324
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
325
+ state_dict = OrderedDict()
326
+
327
+ # buffers
328
+ buffers = zero_model_states[0].buffers
329
+ state_dict.update(buffers)
330
+ if debug:
331
+ print(f"added {len(buffers)} buffers")
332
+
333
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
334
+
335
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
336
+
337
+ # recover shared parameters
338
+ for pair in zero_model_states[0].shared_params:
339
+ if pair[1] in state_dict:
340
+ state_dict[pair[0]] = state_dict[pair[1]]
341
+
342
+ return state_dict
343
+
344
+
345
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
346
+ remainder = unpartitioned_numel % world_size
347
+ padding_numel = (world_size - remainder) if remainder else 0
348
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
349
+ return partitioned_numel, padding_numel
350
+
351
+
352
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
353
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
354
+ return
355
+
356
+ if debug:
357
+ for i in range(world_size):
358
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
359
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
360
+
361
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
362
+ wanted_params = len(frozen_param_shapes)
363
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
364
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
365
+ print(f'Frozen params: Have {avail_numel} numels to process.')
366
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
367
+
368
+ total_params = 0
369
+ total_numel = 0
370
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
371
+ total_params += 1
372
+ unpartitioned_numel = shape.numel()
373
+ total_numel += unpartitioned_numel
374
+
375
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
376
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
377
+
378
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
379
+
380
+ if debug:
381
+ print(
382
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
383
+ )
384
+
385
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
386
+
387
+
388
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
389
+ param_shapes = zero_model_states[0].param_shapes
390
+ avail_numel = fp32_flat_groups[0].numel() * world_size
391
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
392
+ # param, re-consolidating each param, while dealing with padding if any
393
+
394
+ # merge list of dicts, preserving order
395
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
396
+
397
+ if debug:
398
+ for i in range(world_size):
399
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
400
+
401
+ wanted_params = len(param_shapes)
402
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
403
+ # not asserting if there is a mismatch due to possible padding
404
+ avail_numel = fp32_flat_groups[0].numel() * world_size
405
+ print(f"Trainable params: Have {avail_numel} numels to process.")
406
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
407
+
408
+ # params
409
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
410
+ # out-of-core computing solution
411
+ offset = 0
412
+ total_numel = 0
413
+ total_params = 0
414
+ for name, shape in param_shapes.items():
415
+
416
+ unpartitioned_numel = shape.numel()
417
+ total_numel += unpartitioned_numel
418
+ total_params += 1
419
+
420
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
421
+
422
+ if debug:
423
+ print(
424
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
425
+ )
426
+
427
+ # XXX: memory usage doubles here
428
+ state_dict[name] = torch.cat(
429
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
430
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
431
+ offset += partitioned_numel
432
+
433
+ offset *= world_size
434
+
435
+ # Sanity check
436
+ if offset != avail_numel:
437
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
438
+
439
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
440
+
441
+
442
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
443
+ state_dict = OrderedDict()
444
+
445
+ # buffers
446
+ buffers = zero_model_states[0].buffers
447
+ state_dict.update(buffers)
448
+ if debug:
449
+ print(f"added {len(buffers)} buffers")
450
+
451
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
452
+
453
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
454
+
455
+ # recover shared parameters
456
+ for pair in zero_model_states[0].shared_params:
457
+ if pair[1] in state_dict:
458
+ state_dict[pair[0]] = state_dict[pair[1]]
459
+
460
+ return state_dict
461
+
462
+
463
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
464
+ """
465
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
466
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
467
+ via a model hub.
468
+
469
+ Args:
470
+ - ``checkpoint_dir``: path to the desired checkpoint folder
471
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
472
+
473
+ Returns:
474
+ - pytorch ``state_dict``
475
+
476
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
477
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
478
+ the checkpoint.
479
+
480
+ A typical usage might be ::
481
+
482
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
483
+ # do the training and checkpoint saving
484
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
485
+ model = model.cpu() # move to cpu
486
+ model.load_state_dict(state_dict)
487
+ # submit to model hub or save the model to share with others
488
+
489
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
490
+ application. i.e. you will need to re-initialize the deepspeed engine, since
491
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
492
+
493
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
494
+
495
+ """
496
+ if tag is None:
497
+ latest_path = os.path.join(checkpoint_dir, 'latest')
498
+ if os.path.isfile(latest_path):
499
+ with open(latest_path, 'r') as fd:
500
+ tag = fd.read().strip()
501
+ else:
502
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
503
+
504
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
505
+
506
+ if not os.path.isdir(ds_checkpoint_dir):
507
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
508
+
509
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
510
+
511
+
512
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
513
+ """
514
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
515
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
516
+
517
+ Args:
518
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
519
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
520
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
521
+ """
522
+
523
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
524
+ print(f"Saving fp32 state dict to {output_file}")
525
+ torch.save(state_dict, output_file)
526
+
527
+
528
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
529
+ """
530
+ 1. Put the provided model to cpu
531
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
532
+ 3. Load it into the provided model
533
+
534
+ Args:
535
+ - ``model``: the model object to update
536
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
537
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
538
+
539
+ Returns:
540
+ - ``model`: modified model
541
+
542
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
543
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
544
+ conveniently placed for you in the checkpoint folder.
545
+
546
+ A typical usage might be ::
547
+
548
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
549
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
550
+ # submit to model hub or save the model to share with others
551
+
552
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
553
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
554
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
555
+
556
+ """
557
+ logger.info(f"Extracting fp32 weights")
558
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
559
+
560
+ logger.info(f"Overwriting model with fp32 weights")
561
+ model = model.cpu()
562
+ model.load_state_dict(state_dict, strict=False)
563
+
564
+ return model
565
+
566
+
567
+ if __name__ == "__main__":
568
+
569
+ parser = argparse.ArgumentParser()
570
+ parser.add_argument("checkpoint_dir",
571
+ type=str,
572
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
573
+ parser.add_argument(
574
+ "output_file",
575
+ type=str,
576
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
577
+ parser.add_argument("-t",
578
+ "--tag",
579
+ type=str,
580
+ default=None,
581
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
582
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
583
+ args = parser.parse_args()
584
+
585
+ debug = args.debug
586
+
587
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)