root
commited on
Commit
·
2f9eb47
1
Parent(s):
92f1fce
update
Browse files- .gitattributes +4 -0
- added_tokens.json +6 -0
- config.json +84 -0
- generation_config.json +7 -0
- global_step741/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- global_step741/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt +3 -0
- global_step741/mp_rank_00_model_states.pt +3 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +436 -0
- scheduler.pt +3 -0
- special_tokens_map.json +20 -0
- tokenizer_config.json +53 -0
- trainer_state.json +551 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +587 -0
.gitattributes
CHANGED
@@ -33,3 +33,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
model-00003-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
37 |
+
model-00004-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
38 |
+
model-00001-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
39 |
+
model-00002-of-00004.safetensors filter=lfs diff=lfs merge=lfs -text
|
added_tokens.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"<image>": 151646,
|
3 |
+
"<|endoftext|>": 151643,
|
4 |
+
"<|im_end|>": 151645,
|
5 |
+
"<|im_start|>": 151644
|
6 |
+
}
|
config.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/mnt/damovl/yyq/LongVU/LongVU_Qwen2_7B_cambrian",
|
3 |
+
"architectures": [
|
4 |
+
"CambrianQwenForCausalLM"
|
5 |
+
],
|
6 |
+
"attention_bias": false,
|
7 |
+
"attention_dropout": 0.0,
|
8 |
+
"bos_token_id": 151643,
|
9 |
+
"connect_layer": 2,
|
10 |
+
"connector_depth": 3,
|
11 |
+
"connector_only": true,
|
12 |
+
"dino_threshold": 0.83,
|
13 |
+
"drop_threshold": 0.8,
|
14 |
+
"eos_token_id": 151645,
|
15 |
+
"frame_pos": false,
|
16 |
+
"freeze_mm_mlp_adapter": false,
|
17 |
+
"hidden_act": "silu",
|
18 |
+
"hidden_size": 3584,
|
19 |
+
"highres": true,
|
20 |
+
"highres_connect": false,
|
21 |
+
"image_aspect_ratio": "pad",
|
22 |
+
"image_position": 91,
|
23 |
+
"image_token_len": 144,
|
24 |
+
"initializer_range": 0.02,
|
25 |
+
"intermediate_size": 18944,
|
26 |
+
"is_image_newline": true,
|
27 |
+
"is_st_sampler": false,
|
28 |
+
"lowres_token": 8,
|
29 |
+
"max_position_embeddings": 32768,
|
30 |
+
"max_window_layers": 28,
|
31 |
+
"mm_patch_merge_type": "flat",
|
32 |
+
"mm_projector_lr": null,
|
33 |
+
"mm_projector_type": "sva",
|
34 |
+
"mm_use_im_patch_token": false,
|
35 |
+
"mm_use_im_start_end": false,
|
36 |
+
"mm_vision_sampler_lr": null,
|
37 |
+
"mm_vision_select_feature": "patch",
|
38 |
+
"mm_vision_select_layer": -2,
|
39 |
+
"mm_vision_tower_aux_list": [
|
40 |
+
"siglip/CLIP-ViT-SO400M-14-384",
|
41 |
+
"facebook/dinov2-giant-res378"
|
42 |
+
],
|
43 |
+
"mm_vision_tower_aux_token_len_list": [
|
44 |
+
576,
|
45 |
+
576
|
46 |
+
],
|
47 |
+
"mm_vision_tower_lr": null,
|
48 |
+
"model_type": "cambrian_qwen",
|
49 |
+
"num_attention_heads": 28,
|
50 |
+
"num_hidden_layers": 28,
|
51 |
+
"num_key_value_heads": 4,
|
52 |
+
"num_of_vision_sampler_layers": 10,
|
53 |
+
"num_query_group": 1,
|
54 |
+
"pretraining_tp": 1,
|
55 |
+
"query_num_list": [
|
56 |
+
144
|
57 |
+
],
|
58 |
+
"rms_norm_eps": 1e-06,
|
59 |
+
"rope_scaling": null,
|
60 |
+
"rope_theta": 1000000.0,
|
61 |
+
"sliding_window": null,
|
62 |
+
"spmd_debug": null,
|
63 |
+
"spmd_fsdp_sharding": null,
|
64 |
+
"spmd_mesh": null,
|
65 |
+
"start_of_vision_sampler_layers": 0,
|
66 |
+
"stride_of_vision_sampler_layers": 3,
|
67 |
+
"tie_word_embeddings": false,
|
68 |
+
"tokenizer_model_max_length": 8192,
|
69 |
+
"tokenizer_padding_side": "right",
|
70 |
+
"torch_dtype": "bfloat16",
|
71 |
+
"transformers_version": "4.42.4",
|
72 |
+
"tune_mm_mlp_adapter": false,
|
73 |
+
"unfreeze_mm_vision_tower": false,
|
74 |
+
"use_cache": false,
|
75 |
+
"use_mm_proj": true,
|
76 |
+
"use_pos_skipping": false,
|
77 |
+
"use_sliding_window": false,
|
78 |
+
"vision_hidden_size": 1024,
|
79 |
+
"vision_tower_aux_token_len_list": [
|
80 |
+
576,
|
81 |
+
576
|
82 |
+
],
|
83 |
+
"vocab_size": 152064
|
84 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 151643,
|
4 |
+
"eos_token_id": 151645,
|
5 |
+
"transformers_version": "4.42.4",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
global_step741/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:325e2fbb769ad610c77054b581f5cf9646a9a154331f6f49c3a5dd7c6979e60a
|
3 |
+
size 11507505868
|
global_step741/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f4404cad0a8269b7ae46ae1be1498e4d0089bd36a4d10e1938b720c645de8ad
|
3 |
+
size 11507507340
|
global_step741/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f8cceec93f4d86c71e83811816d89ca640c26b00f5c1b2d60146a08ca9af828
|
3 |
+
size 11507507596
|
global_step741/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cacda971a2aec5a4c27993dd510fea6720982d839ee548cc441cc9e8a86a401d
|
3 |
+
size 11507507660
|
global_step741/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:79a66d7766df080e4a3a3f44047746a035a172dd3f21de36fb3f4dffe4f6571c
|
3 |
+
size 11507507532
|
global_step741/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cd86ba2024c47f32a9131e8e2cf122a08f39cf85946461761e7ed98666f895e6
|
3 |
+
size 11507507276
|
global_step741/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:793f900d3ed81c7613e833f5eb4d29c495acb214d587a58d1961e7d76d79077c
|
3 |
+
size 11507508236
|
global_step741/bf16_zero_pp_rank_7_mp_rank_00_optim_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36f79c2af5cd54201fd335ac408600e49846b2fb27f2aeb5e0f3a9a62bbae097
|
3 |
+
size 11507510476
|
global_step741/mp_rank_00_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a48b68883462ce39e68a0f996de693ae8945db58d099a123f5384030c4c9772
|
3 |
+
size 15343452856
|
latest
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
global_step741
|
merges.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f41f56c10c13c0ece80b71b0916dae6bc7ad24453c0877fc6ec0b043e6bb0734
|
3 |
+
size 4877670176
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1b49010db26c2c6e9685e053d0b3036740d862b29ee7ecc966f4af24fbea9ff
|
3 |
+
size 4932751008
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9779343f9870a70179123b94010b60f554633af62f0181af94f48cb2ad43d449
|
3 |
+
size 4442965440
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9adb0e4104faeac3f634caa80379e85220c25abfb81f0f0eb662a61d34d2495c
|
3 |
+
size 1089994880
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,436 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15343331328
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
8 |
+
"model.image_newline": "model-00001-of-00004.safetensors",
|
9 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
10 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
11 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
12 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
13 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
14 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
15 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
16 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
17 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
18 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
19 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
20 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
21 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
22 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
23 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
24 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
25 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
26 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
27 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
28 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
29 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
30 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
31 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
32 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
39 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
42 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
44 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
48 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
51 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
54 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
55 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
56 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
57 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
58 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
59 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
61 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
62 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
63 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
64 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
65 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
66 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
67 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
68 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
69 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
70 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
71 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
72 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
73 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
74 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
75 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
76 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
77 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
78 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
79 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
80 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
81 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
82 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
83 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
84 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
85 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
86 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
87 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
88 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
89 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
90 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
91 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
92 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
93 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
94 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
95 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
96 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
97 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
98 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
99 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
100 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
101 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
102 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
103 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
104 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
105 |
+
"model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
106 |
+
"model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
107 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
108 |
+
"model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
109 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
110 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
111 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
112 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
113 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
114 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
115 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
116 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
117 |
+
"model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
118 |
+
"model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
119 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
120 |
+
"model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
121 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
122 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
123 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
124 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
125 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
126 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
127 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
128 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
129 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
130 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
131 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
132 |
+
"model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
133 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
134 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
135 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
136 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
137 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
138 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
139 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
140 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
141 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
142 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
143 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
144 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
145 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
146 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
147 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
148 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
149 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
150 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
151 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
152 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
153 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
154 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
155 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
156 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
157 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
158 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
159 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
160 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
161 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
162 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
163 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
164 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
165 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
166 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
167 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
168 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
169 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
170 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
171 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
172 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
173 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
174 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
175 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
176 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
177 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
178 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
179 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
180 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
181 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
182 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
183 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
184 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
185 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
186 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
187 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
188 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
189 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
190 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
191 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
192 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
193 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
194 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
195 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
196 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
197 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
198 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
199 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
200 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
201 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
202 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
203 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
204 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
205 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
206 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
207 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
208 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
209 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
210 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
211 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
212 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
213 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
214 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
215 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
216 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
217 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
218 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
219 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
220 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
221 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
222 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
223 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
224 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
225 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
226 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
227 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
228 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
229 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
230 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
231 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
232 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
233 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
234 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
235 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
236 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
237 |
+
"model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
238 |
+
"model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
239 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
240 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
241 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
242 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
243 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
244 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
245 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
246 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
247 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
248 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
249 |
+
"model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
250 |
+
"model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
251 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
252 |
+
"model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
253 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
254 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
255 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
256 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
257 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
258 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
259 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
260 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
261 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
262 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
263 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
264 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
265 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
266 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
267 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
268 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
269 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
270 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
271 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
272 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
273 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
274 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
275 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
276 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
277 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
278 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
279 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
280 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
281 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
282 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
283 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
284 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
285 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
286 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
287 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
288 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
289 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
290 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
291 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
292 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
293 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
294 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
295 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
296 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
297 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
298 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
299 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
300 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
301 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
302 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
303 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
304 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
305 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
306 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
307 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
308 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
309 |
+
"model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
310 |
+
"model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
311 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
312 |
+
"model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
313 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
314 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
315 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
316 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
317 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
318 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
319 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
320 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
321 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
322 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
323 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
324 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
325 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
326 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
327 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
328 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
329 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
330 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
331 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
332 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
333 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
334 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
335 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
336 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
337 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
338 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
339 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
340 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
341 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
342 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
343 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
344 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
345 |
+
"model.mm_projector.0.bias": "model-00003-of-00004.safetensors",
|
346 |
+
"model.mm_projector.0.weight": "model-00003-of-00004.safetensors",
|
347 |
+
"model.mm_projector.2.bias": "model-00003-of-00004.safetensors",
|
348 |
+
"model.mm_projector.2.weight": "model-00003-of-00004.safetensors",
|
349 |
+
"model.mm_projector_aux_0.0.bias": "model-00003-of-00004.safetensors",
|
350 |
+
"model.mm_projector_aux_0.0.weight": "model-00003-of-00004.safetensors",
|
351 |
+
"model.mm_projector_aux_0.2.bias": "model-00003-of-00004.safetensors",
|
352 |
+
"model.mm_projector_aux_0.2.weight": "model-00003-of-00004.safetensors",
|
353 |
+
"model.mm_projector_aux_0.3.bias": "model-00003-of-00004.safetensors",
|
354 |
+
"model.mm_projector_aux_0.3.weight": "model-00003-of-00004.safetensors",
|
355 |
+
"model.mm_projector_aux_1.0.bias": "model-00003-of-00004.safetensors",
|
356 |
+
"model.mm_projector_aux_1.0.weight": "model-00003-of-00004.safetensors",
|
357 |
+
"model.mm_projector_aux_1.2.bias": "model-00003-of-00004.safetensors",
|
358 |
+
"model.mm_projector_aux_1.2.weight": "model-00003-of-00004.safetensors",
|
359 |
+
"model.mm_projector_aux_1.3.bias": "model-00003-of-00004.safetensors",
|
360 |
+
"model.mm_projector_aux_1.3.weight": "model-00003-of-00004.safetensors",
|
361 |
+
"model.norm.weight": "model-00003-of-00004.safetensors",
|
362 |
+
"model.vision_query": "model-00001-of-00004.safetensors",
|
363 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
364 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
365 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
366 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
367 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
368 |
+
"model.vision_sampler_0.layers.0.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
369 |
+
"model.vision_sampler_0.layers.0.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
370 |
+
"model.vision_sampler_0.layers.0.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
|
371 |
+
"model.vision_sampler_0.layers.0.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
|
372 |
+
"model.vision_sampler_0.layers.0.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
|
373 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
374 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
375 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
376 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
377 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
378 |
+
"model.vision_sampler_0.layers.0.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
379 |
+
"model.vision_sampler_0.layers.0.norm.bias": "model-00003-of-00004.safetensors",
|
380 |
+
"model.vision_sampler_0.layers.0.norm.weight": "model-00003-of-00004.safetensors",
|
381 |
+
"model.vision_sampler_0.layers.0.pos_embed_0": "model-00003-of-00004.safetensors",
|
382 |
+
"model.vision_sampler_0.layers.0.pos_embed_1": "model-00003-of-00004.safetensors",
|
383 |
+
"model.vision_sampler_0.layers.0.proj_context.weight": "model-00003-of-00004.safetensors",
|
384 |
+
"model.vision_sampler_0.layers.0.proj_in.weight": "model-00003-of-00004.safetensors",
|
385 |
+
"model.vision_sampler_0.layers.0.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
|
386 |
+
"model.vision_sampler_0.layers.0.proj_out.linear_2.weight": "model-00003-of-00004.safetensors",
|
387 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
388 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
389 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
390 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
391 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
392 |
+
"model.vision_sampler_0.layers.1.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
393 |
+
"model.vision_sampler_0.layers.1.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
394 |
+
"model.vision_sampler_0.layers.1.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
|
395 |
+
"model.vision_sampler_0.layers.1.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
|
396 |
+
"model.vision_sampler_0.layers.1.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
|
397 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
398 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
399 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
400 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
401 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
402 |
+
"model.vision_sampler_0.layers.1.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
403 |
+
"model.vision_sampler_0.layers.1.norm.bias": "model-00003-of-00004.safetensors",
|
404 |
+
"model.vision_sampler_0.layers.1.norm.weight": "model-00003-of-00004.safetensors",
|
405 |
+
"model.vision_sampler_0.layers.1.pos_embed_0": "model-00003-of-00004.safetensors",
|
406 |
+
"model.vision_sampler_0.layers.1.pos_embed_1": "model-00003-of-00004.safetensors",
|
407 |
+
"model.vision_sampler_0.layers.1.proj_context.weight": "model-00003-of-00004.safetensors",
|
408 |
+
"model.vision_sampler_0.layers.1.proj_in.weight": "model-00003-of-00004.safetensors",
|
409 |
+
"model.vision_sampler_0.layers.1.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
|
410 |
+
"model.vision_sampler_0.layers.1.proj_out.linear_2.weight": "model-00003-of-00004.safetensors",
|
411 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
412 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
413 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
414 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
415 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
416 |
+
"model.vision_sampler_0.layers.2.cross_attn.k_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
417 |
+
"model.vision_sampler_0.layers.2.cross_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
418 |
+
"model.vision_sampler_0.layers.2.cross_attn.q_proj.0.bias": "model-00003-of-00004.safetensors",
|
419 |
+
"model.vision_sampler_0.layers.2.cross_attn.q_proj.0.weight": "model-00003-of-00004.safetensors",
|
420 |
+
"model.vision_sampler_0.layers.2.cross_attn.q_proj.1.weight": "model-00003-of-00004.safetensors",
|
421 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_0.0.bias": "model-00003-of-00004.safetensors",
|
422 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_0.0.weight": "model-00003-of-00004.safetensors",
|
423 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_0.1.weight": "model-00003-of-00004.safetensors",
|
424 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_1.0.bias": "model-00003-of-00004.safetensors",
|
425 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_1.0.weight": "model-00003-of-00004.safetensors",
|
426 |
+
"model.vision_sampler_0.layers.2.cross_attn.v_proj_1.1.weight": "model-00003-of-00004.safetensors",
|
427 |
+
"model.vision_sampler_0.layers.2.norm.bias": "model-00003-of-00004.safetensors",
|
428 |
+
"model.vision_sampler_0.layers.2.norm.weight": "model-00003-of-00004.safetensors",
|
429 |
+
"model.vision_sampler_0.layers.2.pos_embed_0": "model-00003-of-00004.safetensors",
|
430 |
+
"model.vision_sampler_0.layers.2.pos_embed_1": "model-00003-of-00004.safetensors",
|
431 |
+
"model.vision_sampler_0.layers.2.proj_context.weight": "model-00003-of-00004.safetensors",
|
432 |
+
"model.vision_sampler_0.layers.2.proj_in.weight": "model-00003-of-00004.safetensors",
|
433 |
+
"model.vision_sampler_0.layers.2.proj_out.linear_1.weight": "model-00003-of-00004.safetensors",
|
434 |
+
"model.vision_sampler_0.layers.2.proj_out.linear_2.weight": "model-00003-of-00004.safetensors"
|
435 |
+
}
|
436 |
+
}
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fadd8eaf8176b5c2f86cb16165e55c152f9fad64e53332ebf9dfbc585ade8600
|
3 |
+
size 1064
|
special_tokens_map.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
"<|im_start|>",
|
4 |
+
"<|im_end|>"
|
5 |
+
],
|
6 |
+
"eos_token": {
|
7 |
+
"content": "<|im_end|>",
|
8 |
+
"lstrip": false,
|
9 |
+
"normalized": false,
|
10 |
+
"rstrip": false,
|
11 |
+
"single_word": false
|
12 |
+
},
|
13 |
+
"pad_token": {
|
14 |
+
"content": "<|endoftext|>",
|
15 |
+
"lstrip": false,
|
16 |
+
"normalized": false,
|
17 |
+
"rstrip": false,
|
18 |
+
"single_word": false
|
19 |
+
}
|
20 |
+
}
|
tokenizer_config.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"add_prefix_space": false,
|
3 |
+
"added_tokens_decoder": {
|
4 |
+
"151643": {
|
5 |
+
"content": "<|endoftext|>",
|
6 |
+
"lstrip": false,
|
7 |
+
"normalized": false,
|
8 |
+
"rstrip": false,
|
9 |
+
"single_word": false,
|
10 |
+
"special": true
|
11 |
+
},
|
12 |
+
"151644": {
|
13 |
+
"content": "<|im_start|>",
|
14 |
+
"lstrip": false,
|
15 |
+
"normalized": false,
|
16 |
+
"rstrip": false,
|
17 |
+
"single_word": false,
|
18 |
+
"special": true
|
19 |
+
},
|
20 |
+
"151645": {
|
21 |
+
"content": "<|im_end|>",
|
22 |
+
"lstrip": false,
|
23 |
+
"normalized": false,
|
24 |
+
"rstrip": false,
|
25 |
+
"single_word": false,
|
26 |
+
"special": true
|
27 |
+
},
|
28 |
+
"151646": {
|
29 |
+
"content": "<image>",
|
30 |
+
"lstrip": false,
|
31 |
+
"normalized": false,
|
32 |
+
"rstrip": false,
|
33 |
+
"single_word": false,
|
34 |
+
"special": true
|
35 |
+
}
|
36 |
+
},
|
37 |
+
"additional_special_tokens": [
|
38 |
+
"<|im_start|>",
|
39 |
+
"<|im_end|>"
|
40 |
+
],
|
41 |
+
"bos_token": null,
|
42 |
+
"chat_template": "{% for message in messages %}{% if loop.first and messages[0]['role'] != 'system' %}{{ '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}{% endif %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}",
|
43 |
+
"clean_up_tokenization_spaces": false,
|
44 |
+
"eos_token": "<|im_end|>",
|
45 |
+
"errors": "replace",
|
46 |
+
"model_max_length": 8192,
|
47 |
+
"pad_token": "<|endoftext|>",
|
48 |
+
"padding_side": "right",
|
49 |
+
"processor_class": "LlavaProcessor",
|
50 |
+
"split_special_tokens": false,
|
51 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
52 |
+
"unk_token": null
|
53 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,551 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.0,
|
5 |
+
"eval_steps": 5000.0,
|
6 |
+
"global_step": 741,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.01349527665317139,
|
13 |
+
"grad_norm": 7.016904524087463,
|
14 |
+
"learning_rate": 8.695652173913043e-07,
|
15 |
+
"loss": 1.1369,
|
16 |
+
"step": 10
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"epoch": 0.02699055330634278,
|
20 |
+
"grad_norm": 4.2020279077827905,
|
21 |
+
"learning_rate": 1.7391304347826085e-06,
|
22 |
+
"loss": 1.0452,
|
23 |
+
"step": 20
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.04048582995951417,
|
27 |
+
"grad_norm": 3.441796090298099,
|
28 |
+
"learning_rate": 1.999530989041473e-06,
|
29 |
+
"loss": 0.9533,
|
30 |
+
"step": 30
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"epoch": 0.05398110661268556,
|
34 |
+
"grad_norm": 3.5191614427600753,
|
35 |
+
"learning_rate": 1.9972348515341017e-06,
|
36 |
+
"loss": 0.8914,
|
37 |
+
"step": 40
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.06747638326585695,
|
41 |
+
"grad_norm": 2.9690875149374367,
|
42 |
+
"learning_rate": 1.9930298323185945e-06,
|
43 |
+
"loss": 0.8475,
|
44 |
+
"step": 50
|
45 |
+
},
|
46 |
+
{
|
47 |
+
"epoch": 0.08097165991902834,
|
48 |
+
"grad_norm": 3.0556169559708475,
|
49 |
+
"learning_rate": 1.986923980536286e-06,
|
50 |
+
"loss": 0.8232,
|
51 |
+
"step": 60
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.09446693657219973,
|
55 |
+
"grad_norm": 2.9704481548374653,
|
56 |
+
"learning_rate": 1.9789289838540896e-06,
|
57 |
+
"loss": 0.822,
|
58 |
+
"step": 70
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"epoch": 0.10796221322537113,
|
62 |
+
"grad_norm": 2.999043629121677,
|
63 |
+
"learning_rate": 1.969060146092264e-06,
|
64 |
+
"loss": 0.791,
|
65 |
+
"step": 80
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.1214574898785425,
|
69 |
+
"grad_norm": 3.17575389006719,
|
70 |
+
"learning_rate": 1.9573363579302263e-06,
|
71 |
+
"loss": 0.806,
|
72 |
+
"step": 90
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"epoch": 0.1349527665317139,
|
76 |
+
"grad_norm": 2.9165449315999563,
|
77 |
+
"learning_rate": 1.943780060746493e-06,
|
78 |
+
"loss": 0.7961,
|
79 |
+
"step": 100
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.1484480431848853,
|
83 |
+
"grad_norm": 2.952637325540401,
|
84 |
+
"learning_rate": 1.928417203661959e-06,
|
85 |
+
"loss": 0.7962,
|
86 |
+
"step": 110
|
87 |
+
},
|
88 |
+
{
|
89 |
+
"epoch": 0.16194331983805668,
|
90 |
+
"grad_norm": 3.014781591451641,
|
91 |
+
"learning_rate": 1.911277193868751e-06,
|
92 |
+
"loss": 0.7781,
|
93 |
+
"step": 120
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.17543859649122806,
|
97 |
+
"grad_norm": 2.8796052156819716,
|
98 |
+
"learning_rate": 1.8923928403397207e-06,
|
99 |
+
"loss": 0.776,
|
100 |
+
"step": 130
|
101 |
+
},
|
102 |
+
{
|
103 |
+
"epoch": 0.18893387314439947,
|
104 |
+
"grad_norm": 2.8482523150497117,
|
105 |
+
"learning_rate": 1.8718002910263424e-06,
|
106 |
+
"loss": 0.7615,
|
107 |
+
"step": 140
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.20242914979757085,
|
111 |
+
"grad_norm": 2.922903791793236,
|
112 |
+
"learning_rate": 1.8495389636652184e-06,
|
113 |
+
"loss": 0.7543,
|
114 |
+
"step": 150
|
115 |
+
},
|
116 |
+
{
|
117 |
+
"epoch": 0.21592442645074225,
|
118 |
+
"grad_norm": 2.9536979340238547,
|
119 |
+
"learning_rate": 1.8256514703256447e-06,
|
120 |
+
"loss": 0.7598,
|
121 |
+
"step": 160
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.22941970310391363,
|
125 |
+
"grad_norm": 3.1334920821882126,
|
126 |
+
"learning_rate": 1.8001835358426684e-06,
|
127 |
+
"loss": 0.7489,
|
128 |
+
"step": 170
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"epoch": 0.242914979757085,
|
132 |
+
"grad_norm": 3.2092630967068683,
|
133 |
+
"learning_rate": 1.7731839102917642e-06,
|
134 |
+
"loss": 0.7551,
|
135 |
+
"step": 180
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.2564102564102564,
|
139 |
+
"grad_norm": 2.987735102823792,
|
140 |
+
"learning_rate": 1.7447042756726754e-06,
|
141 |
+
"loss": 0.7503,
|
142 |
+
"step": 190
|
143 |
+
},
|
144 |
+
{
|
145 |
+
"epoch": 0.2699055330634278,
|
146 |
+
"grad_norm": 2.979147030983217,
|
147 |
+
"learning_rate": 1.7147991469810365e-06,
|
148 |
+
"loss": 0.7528,
|
149 |
+
"step": 200
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.2834008097165992,
|
153 |
+
"grad_norm": 3.1413426729820904,
|
154 |
+
"learning_rate": 1.6835257678571512e-06,
|
155 |
+
"loss": 0.7387,
|
156 |
+
"step": 210
|
157 |
+
},
|
158 |
+
{
|
159 |
+
"epoch": 0.2968960863697706,
|
160 |
+
"grad_norm": 3.1214265634728897,
|
161 |
+
"learning_rate": 1.650944001011663e-06,
|
162 |
+
"loss": 0.7281,
|
163 |
+
"step": 220
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.31039136302294196,
|
167 |
+
"grad_norm": 2.978380133818548,
|
168 |
+
"learning_rate": 1.6171162136378713e-06,
|
169 |
+
"loss": 0.7514,
|
170 |
+
"step": 230
|
171 |
+
},
|
172 |
+
{
|
173 |
+
"epoch": 0.32388663967611336,
|
174 |
+
"grad_norm": 2.85376146602686,
|
175 |
+
"learning_rate": 1.5821071580300269e-06,
|
176 |
+
"loss": 0.7403,
|
177 |
+
"step": 240
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 0.33738191632928477,
|
181 |
+
"grad_norm": 3.1598761470719734,
|
182 |
+
"learning_rate": 1.5459838476361322e-06,
|
183 |
+
"loss": 0.7435,
|
184 |
+
"step": 250
|
185 |
+
},
|
186 |
+
{
|
187 |
+
"epoch": 0.3508771929824561,
|
188 |
+
"grad_norm": 2.821356522721463,
|
189 |
+
"learning_rate": 1.5088154287824932e-06,
|
190 |
+
"loss": 0.7209,
|
191 |
+
"step": 260
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 0.3643724696356275,
|
195 |
+
"grad_norm": 2.98057980294587,
|
196 |
+
"learning_rate": 1.4706730483155736e-06,
|
197 |
+
"loss": 0.7311,
|
198 |
+
"step": 270
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"epoch": 0.37786774628879893,
|
202 |
+
"grad_norm": 3.0364233244848364,
|
203 |
+
"learning_rate": 1.4316297174145016e-06,
|
204 |
+
"loss": 0.7282,
|
205 |
+
"step": 280
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 0.3913630229419703,
|
209 |
+
"grad_norm": 2.949886690990857,
|
210 |
+
"learning_rate": 1.391760171834918e-06,
|
211 |
+
"loss": 0.7078,
|
212 |
+
"step": 290
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"epoch": 0.4048582995951417,
|
216 |
+
"grad_norm": 2.9507364249680053,
|
217 |
+
"learning_rate": 1.3511407288516878e-06,
|
218 |
+
"loss": 0.7201,
|
219 |
+
"step": 300
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 0.4183535762483131,
|
223 |
+
"grad_norm": 2.827650772154331,
|
224 |
+
"learning_rate": 1.3098491411743014e-06,
|
225 |
+
"loss": 0.7147,
|
226 |
+
"step": 310
|
227 |
+
},
|
228 |
+
{
|
229 |
+
"epoch": 0.4318488529014845,
|
230 |
+
"grad_norm": 2.8781557252440635,
|
231 |
+
"learning_rate": 1.267964448114608e-06,
|
232 |
+
"loss": 0.7295,
|
233 |
+
"step": 320
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 0.44534412955465585,
|
237 |
+
"grad_norm": 2.952298995368144,
|
238 |
+
"learning_rate": 1.2255668242917648e-06,
|
239 |
+
"loss": 0.724,
|
240 |
+
"step": 330
|
241 |
+
},
|
242 |
+
{
|
243 |
+
"epoch": 0.45883940620782726,
|
244 |
+
"grad_norm": 3.121925726144687,
|
245 |
+
"learning_rate": 1.1827374261640126e-06,
|
246 |
+
"loss": 0.697,
|
247 |
+
"step": 340
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 0.47233468286099867,
|
251 |
+
"grad_norm": 2.852801476396792,
|
252 |
+
"learning_rate": 1.1395582366810346e-06,
|
253 |
+
"loss": 0.718,
|
254 |
+
"step": 350
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"epoch": 0.48582995951417,
|
258 |
+
"grad_norm": 3.0303857364861955,
|
259 |
+
"learning_rate": 1.0961119083542726e-06,
|
260 |
+
"loss": 0.7197,
|
261 |
+
"step": 360
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 0.4993252361673414,
|
265 |
+
"grad_norm": 3.166667043296761,
|
266 |
+
"learning_rate": 1.05248160504558e-06,
|
267 |
+
"loss": 0.7091,
|
268 |
+
"step": 370
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"epoch": 0.5128205128205128,
|
272 |
+
"grad_norm": 2.906467539598673,
|
273 |
+
"learning_rate": 1.0087508427770638e-06,
|
274 |
+
"loss": 0.6934,
|
275 |
+
"step": 380
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 0.5263157894736842,
|
279 |
+
"grad_norm": 3.02782546633098,
|
280 |
+
"learning_rate": 9.650033298668279e-07,
|
281 |
+
"loss": 0.7025,
|
282 |
+
"step": 390
|
283 |
+
},
|
284 |
+
{
|
285 |
+
"epoch": 0.5398110661268556,
|
286 |
+
"grad_norm": 2.8912523592077637,
|
287 |
+
"learning_rate": 9.213228066966326e-07,
|
288 |
+
"loss": 0.7033,
|
289 |
+
"step": 400
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"epoch": 0.553306342780027,
|
293 |
+
"grad_norm": 2.82347772754047,
|
294 |
+
"learning_rate": 8.777928854181709e-07,
|
295 |
+
"loss": 0.7,
|
296 |
+
"step": 410
|
297 |
+
},
|
298 |
+
{
|
299 |
+
"epoch": 0.5668016194331984,
|
300 |
+
"grad_norm": 2.9229669660658293,
|
301 |
+
"learning_rate": 8.344968899048091e-07,
|
302 |
+
"loss": 0.7022,
|
303 |
+
"step": 420
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"epoch": 0.5802968960863698,
|
307 |
+
"grad_norm": 3.1576009691196707,
|
308 |
+
"learning_rate": 7.915176962551347e-07,
|
309 |
+
"loss": 0.7037,
|
310 |
+
"step": 430
|
311 |
+
},
|
312 |
+
{
|
313 |
+
"epoch": 0.5937921727395412,
|
314 |
+
"grad_norm": 3.1084612640931173,
|
315 |
+
"learning_rate": 7.489375741536281e-07,
|
316 |
+
"loss": 0.7073,
|
317 |
+
"step": 440
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"epoch": 0.6072874493927125,
|
321 |
+
"grad_norm": 2.9866909336253595,
|
322 |
+
"learning_rate": 7.068380293921141e-07,
|
323 |
+
"loss": 0.6877,
|
324 |
+
"step": 450
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"epoch": 0.6207827260458839,
|
328 |
+
"grad_norm": 2.8444556383038053,
|
329 |
+
"learning_rate": 6.652996478534394e-07,
|
330 |
+
"loss": 0.6996,
|
331 |
+
"step": 460
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"epoch": 0.6342780026990553,
|
335 |
+
"grad_norm": 3.073223609545424,
|
336 |
+
"learning_rate": 6.244019412560143e-07,
|
337 |
+
"loss": 0.6941,
|
338 |
+
"step": 470
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"epoch": 0.6477732793522267,
|
342 |
+
"grad_norm": 2.8831703732503753,
|
343 |
+
"learning_rate": 5.842231949544962e-07,
|
344 |
+
"loss": 0.7049,
|
345 |
+
"step": 480
|
346 |
+
},
|
347 |
+
{
|
348 |
+
"epoch": 0.6612685560053981,
|
349 |
+
"grad_norm": 3.060533732204664,
|
350 |
+
"learning_rate": 5.448403180879439e-07,
|
351 |
+
"loss": 0.679,
|
352 |
+
"step": 490
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"epoch": 0.6747638326585695,
|
356 |
+
"grad_norm": 2.9803982323010585,
|
357 |
+
"learning_rate": 5.063286963622902e-07,
|
358 |
+
"loss": 0.6972,
|
359 |
+
"step": 500
|
360 |
+
},
|
361 |
+
{
|
362 |
+
"epoch": 0.6882591093117408,
|
363 |
+
"grad_norm": 2.8648873659535794,
|
364 |
+
"learning_rate": 4.687620477489337e-07,
|
365 |
+
"loss": 0.6894,
|
366 |
+
"step": 510
|
367 |
+
},
|
368 |
+
{
|
369 |
+
"epoch": 0.7017543859649122,
|
370 |
+
"grad_norm": 2.8594131054352054,
|
371 |
+
"learning_rate": 4.3221228137566223e-07,
|
372 |
+
"loss": 0.6984,
|
373 |
+
"step": 520
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"epoch": 0.7152496626180836,
|
377 |
+
"grad_norm": 2.826483265916211,
|
378 |
+
"learning_rate": 3.9674935988002325e-07,
|
379 |
+
"loss": 0.6806,
|
380 |
+
"step": 530
|
381 |
+
},
|
382 |
+
{
|
383 |
+
"epoch": 0.728744939271255,
|
384 |
+
"grad_norm": 3.0466631136136875,
|
385 |
+
"learning_rate": 3.624411654886108e-07,
|
386 |
+
"loss": 0.7028,
|
387 |
+
"step": 540
|
388 |
+
},
|
389 |
+
{
|
390 |
+
"epoch": 0.7422402159244265,
|
391 |
+
"grad_norm": 2.8395840111896806,
|
392 |
+
"learning_rate": 3.293533700786286e-07,
|
393 |
+
"loss": 0.6966,
|
394 |
+
"step": 550
|
395 |
+
},
|
396 |
+
{
|
397 |
+
"epoch": 0.7557354925775979,
|
398 |
+
"grad_norm": 2.9054816392819154,
|
399 |
+
"learning_rate": 2.975493094704435e-07,
|
400 |
+
"loss": 0.6908,
|
401 |
+
"step": 560
|
402 |
+
},
|
403 |
+
{
|
404 |
+
"epoch": 0.7692307692307693,
|
405 |
+
"grad_norm": 2.9460246471571345,
|
406 |
+
"learning_rate": 2.670898621917629e-07,
|
407 |
+
"loss": 0.6947,
|
408 |
+
"step": 570
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"epoch": 0.7827260458839406,
|
412 |
+
"grad_norm": 2.941971675288718,
|
413 |
+
"learning_rate": 2.3803333294549644e-07,
|
414 |
+
"loss": 0.6795,
|
415 |
+
"step": 580
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"epoch": 0.796221322537112,
|
419 |
+
"grad_norm": 3.0680540747802527,
|
420 |
+
"learning_rate": 2.104353410043712e-07,
|
421 |
+
"loss": 0.6743,
|
422 |
+
"step": 590
|
423 |
+
},
|
424 |
+
{
|
425 |
+
"epoch": 0.8097165991902834,
|
426 |
+
"grad_norm": 3.1007189679330374,
|
427 |
+
"learning_rate": 1.843487137459261e-07,
|
428 |
+
"loss": 0.6941,
|
429 |
+
"step": 600
|
430 |
+
},
|
431 |
+
{
|
432 |
+
"epoch": 0.8232118758434548,
|
433 |
+
"grad_norm": 2.8712948349597625,
|
434 |
+
"learning_rate": 1.598233855316856e-07,
|
435 |
+
"loss": 0.6827,
|
436 |
+
"step": 610
|
437 |
+
},
|
438 |
+
{
|
439 |
+
"epoch": 0.8367071524966262,
|
440 |
+
"grad_norm": 3.028709196939323,
|
441 |
+
"learning_rate": 1.369063021240665e-07,
|
442 |
+
"loss": 0.7058,
|
443 |
+
"step": 620
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"epoch": 0.8502024291497976,
|
447 |
+
"grad_norm": 2.8663884949478655,
|
448 |
+
"learning_rate": 1.1564133082398942e-07,
|
449 |
+
"loss": 0.6926,
|
450 |
+
"step": 630
|
451 |
+
},
|
452 |
+
{
|
453 |
+
"epoch": 0.863697705802969,
|
454 |
+
"grad_norm": 2.7965685313183983,
|
455 |
+
"learning_rate": 9.606917650120083e-08,
|
456 |
+
"loss": 0.6902,
|
457 |
+
"step": 640
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"epoch": 0.8771929824561403,
|
461 |
+
"grad_norm": 2.9702187500416426,
|
462 |
+
"learning_rate": 7.822730367804331e-08,
|
463 |
+
"loss": 0.6809,
|
464 |
+
"step": 650
|
465 |
+
},
|
466 |
+
{
|
467 |
+
"epoch": 0.8906882591093117,
|
468 |
+
"grad_norm": 2.9740711603347534,
|
469 |
+
"learning_rate": 6.214986481581364e-08,
|
470 |
+
"loss": 0.6846,
|
471 |
+
"step": 660
|
472 |
+
},
|
473 |
+
{
|
474 |
+
"epoch": 0.9041835357624831,
|
475 |
+
"grad_norm": 3.108653359820244,
|
476 |
+
"learning_rate": 4.786763494098689e-08,
|
477 |
+
"loss": 0.6845,
|
478 |
+
"step": 670
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"epoch": 0.9176788124156545,
|
482 |
+
"grad_norm": 3.0730509775220005,
|
483 |
+
"learning_rate": 3.540795273643926e-08,
|
484 |
+
"loss": 0.6942,
|
485 |
+
"step": 680
|
486 |
+
},
|
487 |
+
{
|
488 |
+
"epoch": 0.9311740890688259,
|
489 |
+
"grad_norm": 2.8851954067191885,
|
490 |
+
"learning_rate": 2.479466821043419e-08,
|
491 |
+
"loss": 0.6858,
|
492 |
+
"step": 690
|
493 |
+
},
|
494 |
+
{
|
495 |
+
"epoch": 0.9446693657219973,
|
496 |
+
"grad_norm": 2.7753430457192816,
|
497 |
+
"learning_rate": 1.604809704353949e-08,
|
498 |
+
"loss": 0.6911,
|
499 |
+
"step": 700
|
500 |
+
},
|
501 |
+
{
|
502 |
+
"epoch": 0.9581646423751687,
|
503 |
+
"grad_norm": 2.894348481910036,
|
504 |
+
"learning_rate": 9.184981700866346e-09,
|
505 |
+
"loss": 0.6892,
|
506 |
+
"step": 710
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"epoch": 0.97165991902834,
|
510 |
+
"grad_norm": 2.9242281390477505,
|
511 |
+
"learning_rate": 4.218459384065953e-09,
|
512 |
+
"loss": 0.6878,
|
513 |
+
"step": 720
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"epoch": 0.9851551956815114,
|
517 |
+
"grad_norm": 3.0382180715715568,
|
518 |
+
"learning_rate": 1.1580368844316125e-09,
|
519 |
+
"loss": 0.6897,
|
520 |
+
"step": 730
|
521 |
+
},
|
522 |
+
{
|
523 |
+
"epoch": 0.9986504723346828,
|
524 |
+
"grad_norm": 3.0414366034886235,
|
525 |
+
"learning_rate": 9.572385238243441e-12,
|
526 |
+
"loss": 0.6865,
|
527 |
+
"step": 740
|
528 |
+
}
|
529 |
+
],
|
530 |
+
"logging_steps": 10,
|
531 |
+
"max_steps": 741,
|
532 |
+
"num_input_tokens_seen": 0,
|
533 |
+
"num_train_epochs": 1,
|
534 |
+
"save_steps": 350,
|
535 |
+
"stateful_callbacks": {
|
536 |
+
"TrainerControl": {
|
537 |
+
"args": {
|
538 |
+
"should_epoch_stop": false,
|
539 |
+
"should_evaluate": false,
|
540 |
+
"should_log": false,
|
541 |
+
"should_save": true,
|
542 |
+
"should_training_stop": true
|
543 |
+
},
|
544 |
+
"attributes": {}
|
545 |
+
}
|
546 |
+
},
|
547 |
+
"total_flos": 8.306076234857578e+18,
|
548 |
+
"train_batch_size": 1,
|
549 |
+
"trial_name": null,
|
550 |
+
"trial_params": null
|
551 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2972accc9d738f819604a83095fbac9d0518b360b7d97ed2b4ef2f45dc082894
|
3 |
+
size 6776
|
vocab.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
zero_to_fp32.py
ADDED
@@ -0,0 +1,587 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
# Copyright (c) Microsoft Corporation.
|
4 |
+
# SPDX-License-Identifier: Apache-2.0
|
5 |
+
|
6 |
+
# DeepSpeed Team
|
7 |
+
|
8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
11 |
+
# application.
|
12 |
+
#
|
13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import torch
|
17 |
+
import glob
|
18 |
+
import math
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
from collections import OrderedDict
|
22 |
+
from dataclasses import dataclass
|
23 |
+
|
24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
26 |
+
from deepspeed.utils import logger
|
27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
30 |
+
|
31 |
+
|
32 |
+
@dataclass
|
33 |
+
class zero_model_state:
|
34 |
+
buffers: dict()
|
35 |
+
param_shapes: dict()
|
36 |
+
shared_params: list
|
37 |
+
ds_version: int
|
38 |
+
frozen_param_shapes: dict()
|
39 |
+
frozen_param_fragments: dict()
|
40 |
+
|
41 |
+
|
42 |
+
debug = 0
|
43 |
+
|
44 |
+
# load to cpu
|
45 |
+
device = torch.device('cpu')
|
46 |
+
|
47 |
+
|
48 |
+
def atoi(text):
|
49 |
+
return int(text) if text.isdigit() else text
|
50 |
+
|
51 |
+
|
52 |
+
def natural_keys(text):
|
53 |
+
'''
|
54 |
+
alist.sort(key=natural_keys) sorts in human order
|
55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
56 |
+
(See Toothy's implementation in the comments)
|
57 |
+
'''
|
58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
59 |
+
|
60 |
+
|
61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
62 |
+
if not os.path.isdir(checkpoint_dir):
|
63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
64 |
+
|
65 |
+
# there should be only one file
|
66 |
+
if zero_stage <= 2:
|
67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
68 |
+
elif zero_stage == 3:
|
69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
70 |
+
|
71 |
+
if not os.path.exists(file):
|
72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
73 |
+
|
74 |
+
return file
|
75 |
+
|
76 |
+
|
77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
80 |
+
|
81 |
+
if len(ckpt_files) == 0:
|
82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
83 |
+
|
84 |
+
return ckpt_files
|
85 |
+
|
86 |
+
|
87 |
+
def get_optim_files(checkpoint_dir):
|
88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
89 |
+
|
90 |
+
|
91 |
+
def get_model_state_files(checkpoint_dir):
|
92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
93 |
+
|
94 |
+
|
95 |
+
def parse_model_states(files):
|
96 |
+
zero_model_states = []
|
97 |
+
for file in files:
|
98 |
+
state_dict = torch.load(file, map_location=device)
|
99 |
+
|
100 |
+
if BUFFER_NAMES not in state_dict:
|
101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
103 |
+
if debug:
|
104 |
+
print("Found buffers:", buffer_names)
|
105 |
+
|
106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
109 |
+
|
110 |
+
# collect parameters that are included in param_shapes
|
111 |
+
param_names = []
|
112 |
+
for s in param_shapes:
|
113 |
+
for name in s.keys():
|
114 |
+
param_names.append(name)
|
115 |
+
|
116 |
+
# update with frozen parameters
|
117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
118 |
+
if frozen_param_shapes is not None:
|
119 |
+
if debug:
|
120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
121 |
+
param_names += list(frozen_param_shapes.keys())
|
122 |
+
|
123 |
+
# handle shared params
|
124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
125 |
+
|
126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
127 |
+
|
128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
129 |
+
|
130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
131 |
+
param_shapes=param_shapes,
|
132 |
+
shared_params=shared_params,
|
133 |
+
ds_version=ds_version,
|
134 |
+
frozen_param_shapes=frozen_param_shapes,
|
135 |
+
frozen_param_fragments=frozen_param_fragments)
|
136 |
+
zero_model_states.append(z_model_state)
|
137 |
+
|
138 |
+
return zero_model_states
|
139 |
+
|
140 |
+
|
141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
142 |
+
|
143 |
+
total_files = len(files)
|
144 |
+
state_dicts = []
|
145 |
+
for f in files:
|
146 |
+
state_dict = torch.load(f, map_location=device)
|
147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
148 |
+
# and also handle the case where it was already removed by another helper script
|
149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
150 |
+
state_dicts.append(state_dict)
|
151 |
+
|
152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
156 |
+
|
157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
159 |
+
# use the max of the partition_count to get the dp world_size.
|
160 |
+
|
161 |
+
if type(world_size) is list:
|
162 |
+
world_size = max(world_size)
|
163 |
+
|
164 |
+
if world_size != total_files:
|
165 |
+
raise ValueError(
|
166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
168 |
+
)
|
169 |
+
|
170 |
+
# the groups are named differently in each stage
|
171 |
+
if zero_stage <= 2:
|
172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
173 |
+
elif zero_stage == 3:
|
174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
175 |
+
else:
|
176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
177 |
+
|
178 |
+
if zero_stage <= 2:
|
179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
180 |
+
elif zero_stage == 3:
|
181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
183 |
+
#
|
184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
186 |
+
|
187 |
+
fp32_flat_groups = [
|
188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
189 |
+
]
|
190 |
+
|
191 |
+
return zero_stage, world_size, fp32_flat_groups
|
192 |
+
|
193 |
+
|
194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
195 |
+
"""
|
196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
197 |
+
|
198 |
+
Args:
|
199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
200 |
+
|
201 |
+
"""
|
202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
203 |
+
|
204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
207 |
+
|
208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
209 |
+
|
210 |
+
zero_model_states = parse_model_states(model_files)
|
211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
212 |
+
|
213 |
+
if zero_stage <= 2:
|
214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
215 |
+
elif zero_stage == 3:
|
216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
217 |
+
|
218 |
+
|
219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
221 |
+
return
|
222 |
+
|
223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
225 |
+
|
226 |
+
if debug:
|
227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
229 |
+
|
230 |
+
wanted_params = len(frozen_param_shapes)
|
231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
235 |
+
|
236 |
+
total_params = 0
|
237 |
+
total_numel = 0
|
238 |
+
for name, shape in frozen_param_shapes.items():
|
239 |
+
total_params += 1
|
240 |
+
unpartitioned_numel = shape.numel()
|
241 |
+
total_numel += unpartitioned_numel
|
242 |
+
|
243 |
+
state_dict[name] = frozen_param_fragments[name]
|
244 |
+
|
245 |
+
if debug:
|
246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
247 |
+
|
248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
249 |
+
|
250 |
+
|
251 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
252 |
+
param_shapes = zero_model_states[0].param_shapes
|
253 |
+
|
254 |
+
# Reconstruction protocol:
|
255 |
+
#
|
256 |
+
# XXX: document this
|
257 |
+
|
258 |
+
if debug:
|
259 |
+
for i in range(world_size):
|
260 |
+
for j in range(len(fp32_flat_groups[0])):
|
261 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
262 |
+
|
263 |
+
# XXX: memory usage doubles here (zero2)
|
264 |
+
num_param_groups = len(fp32_flat_groups[0])
|
265 |
+
merged_single_partition_of_fp32_groups = []
|
266 |
+
for i in range(num_param_groups):
|
267 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
268 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
269 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
270 |
+
avail_numel = sum(
|
271 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
272 |
+
|
273 |
+
if debug:
|
274 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
275 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
276 |
+
# not asserting if there is a mismatch due to possible padding
|
277 |
+
print(f"Have {avail_numel} numels to process.")
|
278 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
279 |
+
|
280 |
+
# params
|
281 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
282 |
+
# out-of-core computing solution
|
283 |
+
total_numel = 0
|
284 |
+
total_params = 0
|
285 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
286 |
+
offset = 0
|
287 |
+
avail_numel = full_single_fp32_vector.numel()
|
288 |
+
for name, shape in shapes.items():
|
289 |
+
|
290 |
+
unpartitioned_numel = shape.numel()
|
291 |
+
total_numel += unpartitioned_numel
|
292 |
+
total_params += 1
|
293 |
+
|
294 |
+
if debug:
|
295 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
296 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
297 |
+
offset += unpartitioned_numel
|
298 |
+
|
299 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
300 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
301 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
302 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
303 |
+
align_to = 2 * world_size
|
304 |
+
|
305 |
+
def zero2_align(x):
|
306 |
+
return align_to * math.ceil(x / align_to)
|
307 |
+
|
308 |
+
if debug:
|
309 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
310 |
+
|
311 |
+
offset = zero2_align(offset)
|
312 |
+
avail_numel = zero2_align(avail_numel)
|
313 |
+
|
314 |
+
if debug:
|
315 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
316 |
+
|
317 |
+
# Sanity check
|
318 |
+
if offset != avail_numel:
|
319 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
320 |
+
|
321 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
322 |
+
|
323 |
+
|
324 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
325 |
+
state_dict = OrderedDict()
|
326 |
+
|
327 |
+
# buffers
|
328 |
+
buffers = zero_model_states[0].buffers
|
329 |
+
state_dict.update(buffers)
|
330 |
+
if debug:
|
331 |
+
print(f"added {len(buffers)} buffers")
|
332 |
+
|
333 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
334 |
+
|
335 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
336 |
+
|
337 |
+
# recover shared parameters
|
338 |
+
for pair in zero_model_states[0].shared_params:
|
339 |
+
if pair[1] in state_dict:
|
340 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
341 |
+
|
342 |
+
return state_dict
|
343 |
+
|
344 |
+
|
345 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
346 |
+
remainder = unpartitioned_numel % world_size
|
347 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
348 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
349 |
+
return partitioned_numel, padding_numel
|
350 |
+
|
351 |
+
|
352 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
353 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
354 |
+
return
|
355 |
+
|
356 |
+
if debug:
|
357 |
+
for i in range(world_size):
|
358 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
359 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
360 |
+
|
361 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
362 |
+
wanted_params = len(frozen_param_shapes)
|
363 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
364 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
365 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
366 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
367 |
+
|
368 |
+
total_params = 0
|
369 |
+
total_numel = 0
|
370 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
371 |
+
total_params += 1
|
372 |
+
unpartitioned_numel = shape.numel()
|
373 |
+
total_numel += unpartitioned_numel
|
374 |
+
|
375 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
376 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
377 |
+
|
378 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
379 |
+
|
380 |
+
if debug:
|
381 |
+
print(
|
382 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
383 |
+
)
|
384 |
+
|
385 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
386 |
+
|
387 |
+
|
388 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
389 |
+
param_shapes = zero_model_states[0].param_shapes
|
390 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
391 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
392 |
+
# param, re-consolidating each param, while dealing with padding if any
|
393 |
+
|
394 |
+
# merge list of dicts, preserving order
|
395 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
396 |
+
|
397 |
+
if debug:
|
398 |
+
for i in range(world_size):
|
399 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
400 |
+
|
401 |
+
wanted_params = len(param_shapes)
|
402 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
403 |
+
# not asserting if there is a mismatch due to possible padding
|
404 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
405 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
406 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
407 |
+
|
408 |
+
# params
|
409 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
410 |
+
# out-of-core computing solution
|
411 |
+
offset = 0
|
412 |
+
total_numel = 0
|
413 |
+
total_params = 0
|
414 |
+
for name, shape in param_shapes.items():
|
415 |
+
|
416 |
+
unpartitioned_numel = shape.numel()
|
417 |
+
total_numel += unpartitioned_numel
|
418 |
+
total_params += 1
|
419 |
+
|
420 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
421 |
+
|
422 |
+
if debug:
|
423 |
+
print(
|
424 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
425 |
+
)
|
426 |
+
|
427 |
+
# XXX: memory usage doubles here
|
428 |
+
state_dict[name] = torch.cat(
|
429 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
430 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
431 |
+
offset += partitioned_numel
|
432 |
+
|
433 |
+
offset *= world_size
|
434 |
+
|
435 |
+
# Sanity check
|
436 |
+
if offset != avail_numel:
|
437 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
438 |
+
|
439 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
440 |
+
|
441 |
+
|
442 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
443 |
+
state_dict = OrderedDict()
|
444 |
+
|
445 |
+
# buffers
|
446 |
+
buffers = zero_model_states[0].buffers
|
447 |
+
state_dict.update(buffers)
|
448 |
+
if debug:
|
449 |
+
print(f"added {len(buffers)} buffers")
|
450 |
+
|
451 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
452 |
+
|
453 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
454 |
+
|
455 |
+
# recover shared parameters
|
456 |
+
for pair in zero_model_states[0].shared_params:
|
457 |
+
if pair[1] in state_dict:
|
458 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
459 |
+
|
460 |
+
return state_dict
|
461 |
+
|
462 |
+
|
463 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
464 |
+
"""
|
465 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
466 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
467 |
+
via a model hub.
|
468 |
+
|
469 |
+
Args:
|
470 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
471 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
472 |
+
|
473 |
+
Returns:
|
474 |
+
- pytorch ``state_dict``
|
475 |
+
|
476 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
477 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
478 |
+
the checkpoint.
|
479 |
+
|
480 |
+
A typical usage might be ::
|
481 |
+
|
482 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
483 |
+
# do the training and checkpoint saving
|
484 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
485 |
+
model = model.cpu() # move to cpu
|
486 |
+
model.load_state_dict(state_dict)
|
487 |
+
# submit to model hub or save the model to share with others
|
488 |
+
|
489 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
490 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
491 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
492 |
+
|
493 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
494 |
+
|
495 |
+
"""
|
496 |
+
if tag is None:
|
497 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
498 |
+
if os.path.isfile(latest_path):
|
499 |
+
with open(latest_path, 'r') as fd:
|
500 |
+
tag = fd.read().strip()
|
501 |
+
else:
|
502 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
503 |
+
|
504 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
505 |
+
|
506 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
507 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
508 |
+
|
509 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
510 |
+
|
511 |
+
|
512 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
513 |
+
"""
|
514 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
515 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
516 |
+
|
517 |
+
Args:
|
518 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
519 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
520 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
521 |
+
"""
|
522 |
+
|
523 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
524 |
+
print(f"Saving fp32 state dict to {output_file}")
|
525 |
+
torch.save(state_dict, output_file)
|
526 |
+
|
527 |
+
|
528 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
529 |
+
"""
|
530 |
+
1. Put the provided model to cpu
|
531 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
532 |
+
3. Load it into the provided model
|
533 |
+
|
534 |
+
Args:
|
535 |
+
- ``model``: the model object to update
|
536 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
537 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
538 |
+
|
539 |
+
Returns:
|
540 |
+
- ``model`: modified model
|
541 |
+
|
542 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
543 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
544 |
+
conveniently placed for you in the checkpoint folder.
|
545 |
+
|
546 |
+
A typical usage might be ::
|
547 |
+
|
548 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
549 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
550 |
+
# submit to model hub or save the model to share with others
|
551 |
+
|
552 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
553 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
554 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
555 |
+
|
556 |
+
"""
|
557 |
+
logger.info(f"Extracting fp32 weights")
|
558 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
559 |
+
|
560 |
+
logger.info(f"Overwriting model with fp32 weights")
|
561 |
+
model = model.cpu()
|
562 |
+
model.load_state_dict(state_dict, strict=False)
|
563 |
+
|
564 |
+
return model
|
565 |
+
|
566 |
+
|
567 |
+
if __name__ == "__main__":
|
568 |
+
|
569 |
+
parser = argparse.ArgumentParser()
|
570 |
+
parser.add_argument("checkpoint_dir",
|
571 |
+
type=str,
|
572 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
573 |
+
parser.add_argument(
|
574 |
+
"output_file",
|
575 |
+
type=str,
|
576 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
577 |
+
parser.add_argument("-t",
|
578 |
+
"--tag",
|
579 |
+
type=str,
|
580 |
+
default=None,
|
581 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
582 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
583 |
+
args = parser.parse_args()
|
584 |
+
|
585 |
+
debug = args.debug
|
586 |
+
|
587 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|