Adding patching code
Browse files
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
license:
|
3 |
language:
|
4 |
- en
|
5 |
datasets:
|
@@ -14,9 +14,9 @@ tags:
|
|
14 |
- output-subspace
|
15 |
---
|
16 |
|
17 |
-
#
|
18 |
|
19 |
-
6-layer DeepSeek-V3 with MLA + shared output latent space trained for research on shared subspaces in Transformer attention mechanisms.
|
20 |
|
21 |
## Model Description
|
22 |
|
@@ -43,62 +43,114 @@ This model is part of the [shared-subspaces](https://github.com/chrisjmccormick/
|
|
43 |
### Output Subspace Decomposition
|
44 |
This model implements a shared output latent space where the attention output projection W^O is decomposed into:
|
45 |
```
|
46 |
-
W^O = W^
|
47 |
```
|
48 |
Where W^OA are per-head projections to the latent space and W^OB is a shared projection back to the model dimension.
|
49 |
|
50 |
## Usage
|
51 |
|
|
|
|
|
|
|
|
|
52 |
```python
|
53 |
import torch
|
|
|
54 |
from transformers import DeepseekV3ForCausalLM, AutoTokenizer
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
# Generate text
|
69 |
inputs = tokenizer("The future of AI is", return_tensors="pt")
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
|
|
72 |
```
|
73 |
|
74 |
## Training Details
|
75 |
|
76 |
- **Pre-training Dataset**: WikiText-103
|
77 |
-
- **Fine-tuning Dataset**: SST-2 (GLUE)
|
78 |
- **Optimizer**: AdamW
|
79 |
-
- **Learning Rate**: 5e-4
|
80 |
-
- **Weight Decay**: 0.01
|
81 |
- **Precision**: bfloat16
|
82 |
- **Compilation**: torch.compile with inductor backend
|
83 |
-
- **Training Steps**: 12,500
|
|
|
84 |
|
85 |
## Limitations
|
86 |
|
87 |
- Small scale model (16M parameters) intended for research purposes
|
88 |
-
- Trained on limited data compared to production models
|
89 |
-
- May require custom loading code for output subspace variants
|
90 |
-
|
91 |
-
## Citation
|
92 |
-
|
93 |
-
```bibtex
|
94 |
-
@misc{mccormick2025sharedsubspaces,
|
95 |
-
title={Shared Subspaces in Transformer Attention: Investigating Output Latent Spaces},
|
96 |
-
author={McCormick, Chris},
|
97 |
-
year={2025},
|
98 |
-
howpublished={\url{https://github.com/chrisjmccormick/shared-subspaces}}
|
99 |
-
}
|
100 |
-
```
|
101 |
-
|
102 |
-
## License
|
103 |
-
|
104 |
-
Apache 2.0
|
|
|
1 |
---
|
2 |
+
license: mit
|
3 |
language:
|
4 |
- en
|
5 |
datasets:
|
|
|
14 |
- output-subspace
|
15 |
---
|
16 |
|
17 |
+
# DeepSeek-Tiny with MLA-o V0.1
|
18 |
|
19 |
+
6-layer DeepSeek-V3 with MLA + shared output latent space ("MLA-o") trained for research on shared subspaces in Transformer attention mechanisms.
|
20 |
|
21 |
## Model Description
|
22 |
|
|
|
43 |
### Output Subspace Decomposition
|
44 |
This model implements a shared output latent space where the attention output projection W^O is decomposed into:
|
45 |
```
|
46 |
+
W^O = W^OA 路 W^OB
|
47 |
```
|
48 |
Where W^OA are per-head projections to the latent space and W^OB is a shared projection back to the model dimension.
|
49 |
|
50 |
## Usage
|
51 |
|
52 |
+
Rather than overwrite the entire attention layer, we simply patched the `o_proj` parameter with a `nn.Sequential`. It's an easy way to modify the model prior to pre-training, but loading the weights is a different story.
|
53 |
+
|
54 |
+
The below code applies the patch, and then loads in the necessary weights manually.
|
55 |
+
|
56 |
```python
|
57 |
import torch
|
58 |
+
import torch.nn as nn
|
59 |
from transformers import DeepseekV3ForCausalLM, AutoTokenizer
|
60 |
+
from safetensors.torch import load_file
|
61 |
+
from huggingface_hub import hf_hub_download
|
62 |
+
|
63 |
+
def load_mla_o_model(repo_id="ChrisMcCormick/deepseek-tiny-mla-o-v0.1"):
|
64 |
+
"""
|
65 |
+
Load the MLA-o model with output subspace decomposition
|
66 |
+
"""
|
67 |
+
|
68 |
+
print("\n<<Ignore the 'weights not used' warning>>\n")
|
69 |
+
|
70 |
+
# Load base model (without decomposed weights)
|
71 |
+
model = DeepseekV3ForCausalLM.from_pretrained(repo_id)
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained(repo_id)
|
73 |
+
|
74 |
+
print("\nPatching weights...\n")
|
75 |
+
|
76 |
+
# Download the safetensors file to get the decomposed weights
|
77 |
+
weights_path = hf_hub_download(repo_id=repo_id, filename="model.safetensors")
|
78 |
+
weights = load_file(weights_path)
|
79 |
+
|
80 |
+
# Apply output subspace decomposition to all attention layers
|
81 |
+
for layer_idx, layer in enumerate(model.model.layers):
|
82 |
+
attn = layer.self_attn
|
83 |
+
|
84 |
+
# Calculate dimensions
|
85 |
+
in_features = attn.num_heads * attn.v_head_dim # 8 * 32 = 256
|
86 |
+
o_latent_dim = 96 # Output latent dimension
|
87 |
+
out_features = model.config.hidden_size # 256
|
88 |
+
bias = bool(getattr(model.config, "attention_bias", False))
|
89 |
+
|
90 |
+
# Replace o_proj with sequential decomposition
|
91 |
+
attn.o_proj = nn.Sequential(
|
92 |
+
nn.Linear(in_features, o_latent_dim, bias=False), # W^OA: 256 -> 96
|
93 |
+
nn.RMSNorm(o_latent_dim, eps=model.config.rms_norm_eps), # Normalization
|
94 |
+
nn.Linear(o_latent_dim, out_features, bias=bias), # W^OB: 96 -> 256
|
95 |
+
)
|
96 |
+
|
97 |
+
# Load the decomposed weights
|
98 |
+
layer_prefix = f"model.layers.{layer_idx}.self_attn.o_proj"
|
99 |
+
|
100 |
+
# Load W^OA weights (o_proj.0.weight)
|
101 |
+
w_oa_key = f"{layer_prefix}.0.weight"
|
102 |
+
if w_oa_key in weights:
|
103 |
+
attn.o_proj[0].weight.data = weights[w_oa_key]
|
104 |
+
|
105 |
+
# Load RMSNorm weights (o_proj.1.weight)
|
106 |
+
w_norm_key = f"{layer_prefix}.1.weight"
|
107 |
+
if w_norm_key in weights:
|
108 |
+
attn.o_proj[1].weight.data = weights[w_norm_key]
|
109 |
+
|
110 |
+
# Load W^OB weights (o_proj.2.weight)
|
111 |
+
w_ob_key = f"{layer_prefix}.2.weight"
|
112 |
+
if w_ob_key in weights:
|
113 |
+
attn.o_proj[2].weight.data = weights[w_ob_key]
|
114 |
+
|
115 |
+
# Load W^OB bias if it exists
|
116 |
+
w_ob_bias_key = f"{layer_prefix}.2.bias"
|
117 |
+
if w_ob_bias_key in weights and attn.o_proj[2].bias is not None:
|
118 |
+
attn.o_proj[2].bias.data = weights[w_ob_bias_key]
|
119 |
+
|
120 |
+
print("Model loaded and patched.")
|
121 |
+
return model, tokenizer
|
122 |
+
|
123 |
+
# Load the model
|
124 |
+
model, tokenizer = load_mla_o_model()
|
125 |
|
126 |
# Generate text
|
127 |
inputs = tokenizer("The future of AI is", return_tensors="pt")
|
128 |
+
with torch.no_grad():
|
129 |
+
outputs = model.generate(
|
130 |
+
**inputs,
|
131 |
+
max_length=50,
|
132 |
+
temperature=0.7,
|
133 |
+
do_sample=True,
|
134 |
+
pad_token_id=tokenizer.eos_token_id
|
135 |
+
)
|
136 |
+
|
137 |
+
print("Generated text:")
|
138 |
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
139 |
+
|
140 |
```
|
141 |
|
142 |
## Training Details
|
143 |
|
144 |
- **Pre-training Dataset**: WikiText-103
|
|
|
145 |
- **Optimizer**: AdamW
|
146 |
+
- **Learning Rate**: 5e-4
|
147 |
+
- **Weight Decay**: 0.01
|
148 |
- **Precision**: bfloat16
|
149 |
- **Compilation**: torch.compile with inductor backend
|
150 |
+
- **Training Steps**: 12,500
|
151 |
+
- **Effective Batch Size**: 1,024
|
152 |
|
153 |
## Limitations
|
154 |
|
155 |
- Small scale model (16M parameters) intended for research purposes
|
156 |
+
- Trained on limited data compared to production models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|