--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: token_classify results: [] datasets: - eriktks/conll2003 pipeline_tag: token-classification library_name: flair --- # token_classify This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0632 - Precision: 0.9295 - Recall: 0.9497 - F1: 0.9395 - Accuracy: 0.9857 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.077 | 1.0 | 1756 | 0.0641 | 0.9060 | 0.9340 | 0.9198 | 0.9816 | | 0.0346 | 2.0 | 3512 | 0.0695 | 0.9234 | 0.9419 | 0.9326 | 0.9840 | | 0.0211 | 3.0 | 5268 | 0.0632 | 0.9295 | 0.9497 | 0.9395 | 0.9857 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1