--- license: apache-2.0 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy model-index: - name: vit-base-patch16-224-in21k-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder args: default metrics: - name: Accuracy type: accuracy value: 0.9016949152542373 --- # vit-base-patch16-224-in21k-finetuned-eurosat This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.3648 - Accuracy: 0.9017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.91 | 5 | 0.5982 | 0.7492 | | 0.645 | 1.91 | 10 | 0.4862 | 0.7593 | | 0.645 | 2.91 | 15 | 0.4191 | 0.7966 | | 0.465 | 3.91 | 20 | 0.3803 | 0.8780 | | 0.465 | 4.91 | 25 | 0.3648 | 0.9017 | ### Framework versions - Transformers 4.17.0 - Pytorch 1.11.0+cpu - Datasets 2.2.0 - Tokenizers 0.12.1