--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: default split: None args: default metrics: - name: Accuracy type: accuracy value: 0.87 --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.5071 - Accuracy: 0.87 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.7065 | 1.0 | 113 | 1.5003 | 0.61 | | 1.0785 | 2.0 | 226 | 1.0084 | 0.69 | | 0.8457 | 3.0 | 339 | 0.7742 | 0.79 | | 0.6696 | 4.0 | 452 | 0.6197 | 0.82 | | 0.5859 | 5.0 | 565 | 0.5071 | 0.87 | | 0.3813 | 6.0 | 678 | 0.5068 | 0.85 | | 0.4032 | 7.0 | 791 | 0.4872 | 0.87 | | 0.2352 | 8.0 | 904 | 0.5913 | 0.83 | | 0.1345 | 9.0 | 1017 | 0.6382 | 0.84 | | 0.1871 | 10.0 | 1130 | 0.5928 | 0.87 | | 0.1533 | 11.0 | 1243 | 0.5992 | 0.86 | | 0.108 | 12.0 | 1356 | 0.6503 | 0.83 | | 0.0642 | 13.0 | 1469 | 0.6233 | 0.86 | | 0.0419 | 14.0 | 1582 | 0.6289 | 0.86 | | 0.0461 | 15.0 | 1695 | 0.6338 | 0.87 | ### Framework versions - Transformers 4.54.1 - Pytorch 2.9.0.dev20250731+cu128 - Datasets 3.6.0 - Tokenizers 0.21.4