--- base_model: - Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B - Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B tags: - merge - mergekit - lazymergekit - Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B - Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B --- # Psyche-3 Psyche-3 is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B](https://huggingface.co/Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B) * [Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B](https://huggingface.co/Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B) ## 🧩 Configuration ```yaml models: - model: Casual-Autopsy/Psyche-2 - model: Cas-Warehouse/Llama-3-MopeyMule-Blackroot-8B parameters: weight: 0.25 - model: Cas-Warehouse/Llama-3-SOVL-MopeyMule-8B parameters: weight: 0.15 merge_method: task_arithmetic base_model: Casual-Autopsy/Psyche-2 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "Casual-Autopsy/Psyche-3" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```