""" Progressive Image Reveal Mosaic System for Tag Collector Game This module provides a completely different approach to the tag mosaic visualization, treating it as a progressive image reveal where each tag discovery unveils portions of a template image, with rarer tags revealing more pixels. """ import os import hashlib import streamlit as st import numpy as np import math import io import time import random from PIL import Image, ImageDraw, ImageFilter from game_constants import RARITY_LEVELS, ENKEPHALIN_CURRENCY_NAME, ENKEPHALIN_ICON # Default paths DEFAULT_TEMPLATES_DIR = "mosaics/templates" DEFAULT_MOSAICS_DIR = "mosaics" def ensure_directories(): """Ensure all required directories exist""" # Create mosaics directory if it doesn't exist if not os.path.exists(DEFAULT_MOSAICS_DIR): os.makedirs(DEFAULT_MOSAICS_DIR) # Create templates directory if it doesn't exist if not os.path.exists(DEFAULT_TEMPLATES_DIR): os.makedirs(DEFAULT_TEMPLATES_DIR) def initialize_mosaic(mosaic_name="main", total_tags=100): """ Initialize the appropriate mosaic type based on the template file. Args: mosaic_name: Name of the mosaic (used for file paths) total_tags: Total number of tags expected for this mosaic Returns: An instance of RevealMosaic, AnimatedRevealMosaic, or VideoRevealMosaic """ # Check for GIF template gif_path = os.path.join(DEFAULT_TEMPLATES_DIR, f"{mosaic_name}_template.gif") if os.path.exists(gif_path): # Try to open as GIF and check if animated try: img = Image.open(gif_path) is_animated = hasattr(img, 'n_frames') and img.n_frames > 1 if is_animated: print(f"Found animated GIF template: {gif_path}") return AnimatedRevealMosaic( total_tags=total_tags, template_path=gif_path, mosaic_name=mosaic_name ) except Exception as e: print(f"Error checking animation: {e}") # Fallback to standard reveal mosaic return RevealMosaic( total_tags=total_tags, mosaic_name=mosaic_name ) class RevealMosaic: """Manages the progressive revealing of an image as tags are discovered""" def __init__(self, total_tags=100, template_path=None, mosaic_name="main", save_path=None, mask_color=(0, 0, 0)): """ Initialize the reveal mosaic Args: total_tags: Total number of tags expected for this mosaic template_path: Path to the template image. If None, generated from mosaic_name mosaic_name: Name of the mosaic for storage save_path: Path to save the mosaic mask. If None, generated from mosaic_name mask_color: Color to use for the mask (default: black) """ # Store basic parameters self.total_tags = max(1, total_tags) # Ensure at least 1 tag self.mosaic_name = mosaic_name self.mask_color = mask_color # Ensure directories exist ensure_directories() # Generate paths if not provided if save_path is None: self.save_path = os.path.join(DEFAULT_MOSAICS_DIR, f"{mosaic_name}_mosaic_mask.png") else: self.save_path = save_path if template_path is None: self.template_path = os.path.join(DEFAULT_TEMPLATES_DIR, f"{mosaic_name}_template.png") else: self.template_path = template_path # Initialize tracking sets self.processed_tags = set() # Tags we've already processed self.revealed_pixels = set() # Pixels that have been revealed self.highlighted_tags = [] # Recently added tags # Load or create template image self.template_image = self.load_template_image() # Get image dimensions self.width, self.height = self.template_image.size self.total_pixels = self.width * self.height # Calculate how many pixels each tag should reveal on average self.base_pixels_per_tag = self.total_pixels / self.total_tags print(f"Base pixels per tag: {self.base_pixels_per_tag:.1f} (Total: {self.total_pixels} pixels, {self.total_tags} tags)") # Create or load the mask self.mask = self.load_or_create_mask() # Create an image-wide priority map once (for consistent reveals) # Only create this when needed to save memory and startup time self._priority_map = None # Track last update time self.last_update_time = time.time() # Flag to indicate if an update is needed self.needs_update = False # Cache for the final image self._cached_image = None # Flag for whether the cache is valid self._cache_valid = False @property def priority_map(self): """Lazy-load the priority map only when needed""" if self._priority_map is None: print(f"Generating priority map for {self.mosaic_name}...") self._priority_map = self.create_priority_map() return self._priority_map def load_template_image(self): """Load the template image or create a default one""" if os.path.exists(self.template_path): try: img = Image.open(self.template_path).convert('RGB') print(f"Loaded template image from {self.template_path}") return img except Exception as e: print(f"Error loading template image: {e}") # If no image exists or there was an error, create a default return self.create_default_template() def load_or_create_mask(self): """Load an existing mask or create a new one""" if os.path.exists(self.save_path): try: mask = Image.open(self.save_path).convert('L') # Ensure mask size matches template if mask.size != self.template_image.size: mask = mask.resize(self.template_image.size) print(f"Loaded mask from {self.save_path}") # Count revealed pixels (where mask is 0/transparent) revealed_count = 0 mask_data = mask.getdata() for i, pixel in enumerate(mask_data): if pixel == 0: x = i % self.width y = i // self.width self.revealed_pixels.add((x, y)) revealed_count += 1 print(f"Mask has {revealed_count} revealed pixels out of {self.total_pixels}") return mask except Exception as e: print(f"Error loading mask: {e}") # Create a new fully opaque mask (nothing revealed) mask = Image.new('L', self.template_image.size, 255) return mask def has_new_tags(self, collected_tags): """ Check if there are new tags that haven't been processed yet. Args: collected_tags: Dictionary of {tag_name: info} of collected tags Returns: Tuple of (has_new_tags, count_of_new_tags) """ new_tag_count = 0 # Check for tags that aren't in processed_tags for tag, info in collected_tags.items(): # Only include tags with count > 0 if info.get("count", 0) <= 0: continue # Count tags we haven't processed yet if tag not in self.processed_tags: new_tag_count += 1 return (new_tag_count > 0, new_tag_count) def update_with_tags(self, collected_tags, metadata=None, force_update=False): """ Update the mosaic with newly collected tags. Args: collected_tags: Dictionary of {tag_name: info} of collected tags metadata: Optional metadata (not used in this implementation) force_update: Force update even if there are no new tags Returns: Number of newly revealed pixels """ # If no force update, quick check for new tags has_new, new_count = self.has_new_tags(collected_tags) if not has_new and not force_update: # No new tags to process return 0 # Get start time for performance tracking start_time = time.time() # Clear previous highlights self.highlighted_tags = [] # Track if we need to update the mask self.needs_update = False total_newly_revealed = 0 # Process all tags in the collection if this is first run or force_update # Otherwise just process new tags known_tags = set(self.processed_tags) all_tags_to_process = [] # First pass: determine which tags to process for tag, info in collected_tags.items(): # Only include tags with count > 0 if info.get("count", 0) <= 0: continue # Mark new tags for processing if tag not in known_tags: # Get the tag's rarity rarity = info.get("rarity", "Canard") # Default to lowest rarity all_tags_to_process.append((tag, rarity, True)) # True = new tag # If no newly discovered tags, but on first run, process all existing tags if not all_tags_to_process and (len(self.processed_tags) == 0 or force_update): for tag, info in collected_tags.items(): if info.get("count", 0) <= 0: continue rarity = info.get("rarity", "Canard") all_tags_to_process.append((tag, rarity, False)) # False = not new # If nothing to process, return early if not all_tags_to_process: return 0 # Sort tags by rarity (process rarest first) rarity_order = ["Impuritas Civitas", "Star of the City", "Urban Nightmare", "Urban Plague", "Urban Legend", "Urban Myth", "Canard"] def get_rarity_rank(tag_tuple): _, rarity, _ = tag_tuple if rarity in rarity_order: return rarity_order.index(rarity) return len(rarity_order) # Unknown rarity goes at the end all_tags_to_process.sort(key=get_rarity_rank) # Process tags for tag, rarity, is_new in all_tags_to_process: # Reveal pixels for this tag newly_revealed = self.reveal_pixels_for_tag(tag, rarity) total_newly_revealed += newly_revealed # Mark this tag as processed self.processed_tags.add(tag) # Update and save the mask if we revealed new pixels if self.needs_update: self.update_mask() # Invalidate the image cache self._cache_valid = False # Update last update time self.last_update_time = time.time() # Report performance end_time = time.time() print(f"Mosaic update processed {len(all_tags_to_process)} tags, revealed {total_newly_revealed} pixels in {end_time - start_time:.3f}s") return total_newly_revealed def reveal_pixels_for_tag(self, tag, rarity): """ Reveal pixels for a newly discovered tag. Args: tag: The tag name rarity: The tag's rarity Returns: Number of newly revealed pixels """ # Calculate how many pixels to reveal pixels_to_reveal = self.calculate_pixels_to_reveal(rarity) # Get next set of pixels to reveal from priority map newly_revealed = [] for pixel in self.priority_map: if pixel not in self.revealed_pixels: newly_revealed.append(pixel) self.revealed_pixels.add(pixel) if len(newly_revealed) >= pixels_to_reveal: break # No need to update if no new pixels were revealed if not newly_revealed: return 0 # Add tag to highlighted tags if newly_revealed: # Add a random revealed pixel to highlight highlight_pixel = random.choice(newly_revealed) self.highlighted_tags.append((tag, highlight_pixel[0], highlight_pixel[1], rarity)) # Flag that we need to update the mask self.needs_update = True # Return count of newly revealed pixels return len(newly_revealed) def update_mask(self): """Update and save the mask based on current revealed pixels""" # Create a new mask image new_mask = Image.new('L', (self.width, self.height), 255) # Reveal pixels (set to 0/transparent where we want the image to show) pixels_updated = 0 for x, y in self.revealed_pixels: if 0 <= x < self.width and 0 <= y < self.height: new_mask.putpixel((x, y), 0) pixels_updated += 1 print(f"Updated mask with {pixels_updated} revealed pixels") # Save the updated mask self.mask = new_mask try: self.mask.save(self.save_path) print(f"Saved mask to {self.save_path}") except Exception as e: print(f"Error saving mask: {e}") # Invalidate the image cache since the mask has changed self._cache_valid = False def get_image(self, force_refresh=False): """ Get the current mosaic image (template with mask applied). Uses caching to avoid regenerating the image unless needed. Args: force_refresh: Force regeneration of the image even if cached Returns: PIL Image of the current state """ # Check if we need to regenerate the image if force_refresh or not self._cache_valid or self._cached_image is None: print(f"Regenerating mosaic image for {self.mosaic_name}") # If the mask file exists but differs from our current mask, reload it if os.path.exists(self.save_path): try: file_mask = Image.open(self.save_path).convert('L') if file_mask.size == self.mask.size: # Check if the masks are different diff = 0 file_data = file_mask.getdata() mask_data = self.mask.getdata() for i, (f_pixel, m_pixel) in enumerate(zip(file_data, mask_data)): if f_pixel != m_pixel: diff += 1 if diff > 0: print(f"Mask file differs from memory by {diff} pixels, reloading") self.mask = file_mask except Exception as e: print(f"Error comparing masks: {e}") # Create a copy of the template result = self.template_image.copy() # Create a solid color image for unrevealed areas mask_color_img = Image.new('RGB', result.size, self.mask_color) # Apply the mask (0=transparent, 255=opaque) result.paste(mask_color_img, (0, 0), self.mask) # Cache the result self._cached_image = result self._cache_valid = True return result else: # Return cached image return self._cached_image def load_or_create_mask(self): """Load an existing mask or create a new one""" if os.path.exists(self.save_path): try: mask = Image.open(self.save_path).convert('L') # Ensure mask size matches template if mask.size != self.template_image.size: print(f"Resizing mask from {mask.size} to {self.template_image.size}") mask = mask.resize(self.template_image.size) # Save the resized mask mask.save(self.save_path) print(f"Loaded mask from {self.save_path}") # Count revealed pixels (where mask is 0/transparent) revealed_count = 0 mask_data = mask.getdata() for i, pixel in enumerate(mask_data): if pixel == 0: # Fully transparent x = i % self.width y = i // self.width self.revealed_pixels.add((x, y)) revealed_count += 1 print(f"Loaded mask has {revealed_count} revealed pixels out of {self.total_pixels}") return mask except Exception as e: print(f"Error loading mask: {e}") # Create a new fully opaque mask (nothing revealed) print(f"Creating new mask for {self.mosaic_name}") mask = Image.new('L', self.template_image.size, 255) # Save the empty mask mask.save(self.save_path) return mask def get_stats(self): """ Get statistics about the mosaic completion. Returns: Dictionary with completion statistics """ # Calculate completion percentage revealed_count = len(self.revealed_pixels) completion_percentage = min(100, (revealed_count / self.total_pixels) * 100) return { "revealed_pixels": revealed_count, "total_pixels": self.total_pixels, "completion_percentage": completion_percentage, "completion_pattern": get_completion_pattern(completion_percentage), "newly_highlighted": len(self.highlighted_tags), "has_new_tags": len(self.highlighted_tags) > 0 } def calculate_pixels_to_reveal(self, rarity): """ Calculate how many pixels to reveal based on tag rarity and total tags. Args: rarity: The rarity of the discovered tag Returns: Number of pixels to reveal """ # Get total tags to distribute pixels among # This value should be set correctly during initialization total_tags_expected = max(1, self.total_tags) # Calculate base pixels per tag (equal distribution) base_pixels_per_tag = self.total_pixels / total_tags_expected # Apply rarity multiplier rarity_multiplier = 1.0 if rarity == "Canard": rarity_multiplier = 0.5 # Half the average elif rarity == "Urban Myth": rarity_multiplier = 0.8 # Slightly below average elif rarity == "Urban Legend": rarity_multiplier = 1.0 # Average elif rarity == "Urban Plague": rarity_multiplier = 1.5 # Above average elif rarity == "Urban Nightmare": rarity_multiplier = 2.0 # Double elif rarity == "Star of the City": rarity_multiplier = 3.0 # Triple elif rarity == "Impuritas Civitas": rarity_multiplier = 5.0 # Five times # Calculate pixels to reveal, ensuring at least 100 pixels pixels_to_reveal = max(100, int(base_pixels_per_tag * rarity_multiplier)) # Don't reveal too many at once for visual smoothness max_at_once = min(100000, int(self.total_pixels * 0.1)) # 10% of total or 100k, whichever is less pixels_to_reveal = min(pixels_to_reveal, max_at_once) # Make sure we don't try to reveal more than what's left unrevealed_pixels = self.total_pixels - len(self.revealed_pixels) pixels_to_reveal = min(pixels_to_reveal, unrevealed_pixels) return pixels_to_reveal def create_priority_map(self): """ Create a priority map for pixel reveal order. Returns: List of pixel coordinates in priority order (highest to lowest) """ # Convert the image to grayscale for brightness analysis gray_img = self.template_image.convert('L') # Get brightness values brightness_map = {} width, height = gray_img.size # Create center point and max distance for normalization center_x, center_y = width // 2, height // 2 max_dist = math.sqrt(center_x**2 + center_y**2) # Calculate priority based on: # 1. Distance from center (higher = closer to center) # 2. Brightness (higher = brighter parts of image) for y in range(height): for x in range(width): # Distance from center (normalized 0-1) dx, dy = x - center_x, y - center_y distance = math.sqrt(dx**2 + dy**2) distance_factor = 1.0 - (distance / max_dist) # Brightness (normalized 0-1) brightness = gray_img.getpixel((x, y)) / 255.0 # Edge detection factor - look for neighboring pixels with different brightness # This helps reveal edges of objects first edge_factor = 0.0 if x > 0 and x < width-1 and y > 0 and y < height-1: # Check surrounding pixels neighbors = [ gray_img.getpixel((x-1, y)), gray_img.getpixel((x+1, y)), gray_img.getpixel((x, y-1)), gray_img.getpixel((x, y+1)) ] current = gray_img.getpixel((x, y)) # Calculate average difference with neighbors diff_sum = sum(abs(current - n) for n in neighbors) edge_factor = min(1.0, diff_sum / (4 * 255.0)) # Calculate priority - weight factors according to importance # 40% distance from center, 40% brightness, 20% edge detection priority = (distance_factor * 0.4) + (brightness * 0.4) + (edge_factor * 0.2) # Store in map with a small random factor to prevent exact ties random_factor = random.random() * 0.01 # 1% randomness brightness_map[(x, y)] = priority + random_factor # Sort by priority (highest to lowest) sorted_pixels = sorted(brightness_map.items(), key=lambda x: x[1], reverse=True) # Return just the pixel coordinates in order return [pixel for pixel, _ in sorted_pixels] def create_default_template(self, width=1024, height=1024): """Create a default colorful template image""" # Create a new black canvas img = Image.new('RGB', (width, height), (0, 0, 0)) draw = ImageDraw.Draw(img) # Draw a colorful circular pattern center_x, center_y = width // 2, height // 2 max_radius = min(width, height) // 2 - 10 # Draw colorful background gradients for y in range(height): for x in range(width): # Calculate distance from center dx, dy = x - center_x, y - center_y distance = math.sqrt(dx*dx + dy*dy) # Calculate angle angle = math.atan2(dy, dx) # Normalize distance norm_distance = min(1.0, distance / max_radius) # Create color based on angle and distance # This creates a colorful cosmic-like background hue = (math.degrees(angle) % 360) / 360.0 saturation = 0.7 - 0.3 * norm_distance value = 0.2 + 0.3 * (1 - norm_distance) # Convert HSV to RGB h = hue * 6 i = int(h) f = h - i p = value * (1 - saturation) q = value * (1 - saturation * f) t = value * (1 - saturation * (1 - f)) if i == 0: r, g, b = value, t, p elif i == 1: r, g, b = q, value, p elif i == 2: r, g, b = p, value, t elif i == 3: r, g, b = p, q, value elif i == 4: r, g, b = t, p, value else: r, g, b = value, p, q r, g, b = int(r * 255), int(g * 255), int(b * 255) # Make the center brighter if distance < max_radius * 0.2: # Central brightness brightness = 1.0 - (distance / (max_radius * 0.2)) r = min(255, r + int(brightness * (255 - r))) g = min(255, g + int(brightness * (255 - g))) b = min(255, b + int(brightness * (255 - b))) # Add a bright spot at the center img.putpixel((x, y), (r, g, b)) # Draw a central bright spot for r in range(50, 0, -1): brightness = 1.0 - (r / 50) color = ( min(255, int(200 + brightness * 55)), min(255, int(150 + brightness * 105)), min(255, int(100 + brightness * 155)) ) draw.ellipse((center_x - r, center_y - r, center_x + r, center_y + r), fill=color) # Apply a slight blur for a smoother appearance img = img.filter(ImageFilter.GaussianBlur(radius=1.5)) # Save the template img.save(self.template_path) print(f"Created default template at {self.template_path}") return img def get_completion_pattern(completion_percentage): """ Get a description of the completion pattern based on percentage. Args: completion_percentage: Percentage of completion (0-100) Returns: String description of what's visible """ if completion_percentage < 1: return "the first glimpses of a hidden image" elif completion_percentage < 5: return "emerging fragments of a mysterious picture" elif completion_percentage < 15: return "a partial revelation of the concealed artwork" elif completion_percentage < 30: return "a quarter of the image taking shape" elif completion_percentage < 50: return "half of the picture becoming clear" elif completion_percentage < 75: return "most of the image revealed" elif completion_percentage < 95: return "nearly complete image with just a few hidden details" else: return "fully revealed artwork" class AnimatedRevealMosaic(RevealMosaic): """Manages the progressive revealing of an animated GIF or video as tags are discovered""" def __init__(self, total_tags=100, template_path=None, mosaic_name="main", save_path=None, mask_color=(0, 0, 0)): """Initialize with support for animated GIFs""" # Store animation-specific attributes self.is_animated = False self.frames = [] self.frame_durations = [] # Call parent initializer super().__init__( total_tags=total_tags, template_path=template_path, mosaic_name=mosaic_name, save_path=save_path, mask_color=mask_color ) def load_template_image(self): """Load the template image with support for animated GIFs""" if os.path.exists(self.template_path): try: # Open the image img = Image.open(self.template_path) # Check if it's an animated GIF try: # Get number of frames self.is_animated = hasattr(img, 'n_frames') and img.n_frames > 1 if self.is_animated: print(f"Loading animated GIF with {img.n_frames} frames") # Store all frames self.frames = [] self.frame_durations = [] for frame_idx in range(img.n_frames): img.seek(frame_idx) # Store frame duration self.frame_durations.append(img.info.get('duration', 100)) # Default 100ms # Store frame as RGB self.frames.append(img.convert('RGB').copy()) # Return the first frame as the template_image return self.frames[0] else: # Not animated, treat as regular image print(f"Loaded static template image from {self.template_path}") return img.convert('RGB') except Exception as e: print(f"Error processing animation: {e}") # Fallback to static image return img.convert('RGB') except Exception as e: print(f"Error loading template image: {e}") # If no image exists or there was an error, create a default return self.create_default_template() def get_image(self, force_refresh=False): """ Get the current mosaic image with support for animation. Args: force_refresh: Force regeneration of the image even if cached Returns: PIL Image or list of PIL Images for animated GIFs """ # If not animated, use parent method if not self.is_animated or not self.frames: return super().get_image(force_refresh) # Check if we need to regenerate the image if force_refresh or not self._cache_valid or self._cached_image is None: print(f"Regenerating animated mosaic image for {self.mosaic_name}") # Create masked frames masked_frames = [] # Create a solid color image for unrevealed areas mask_color_img = Image.new('RGB', self.frames[0].size, self.mask_color) # Apply mask to each frame for frame in self.frames: # Create a copy of the frame result_frame = frame.copy() # Apply the mask (0=transparent, 255=opaque) result_frame.paste(mask_color_img, (0, 0), self.mask) # Add to masked frames masked_frames.append(result_frame) # Store the frames and mark cache as valid self._cached_image = masked_frames self._cache_valid = True return masked_frames else: # Return cached frames return self._cached_image def display_tag_mosaic(): """Display the tag mosaic in the game UI with progressive image reveal""" import streamlit as st # Create a container for the mosaic display with st.container(): st.subheader("🧩 Tag Collection Mosaic") # Add loading warning st.info("⏳ Note: Initial loading or switching templates may take some time for high-resolution images due to pixel processing.") # Add an expander for advanced settings with st.expander("Mosaic Settings", expanded=False): # Only render the uploader if the expander is open uploaded_file = st.file_uploader("Upload a custom template image", type=["png", "jpg", "jpeg", "gif"]) if uploaded_file is not None: try: # Process the uploaded image image = Image.open(uploaded_file) # Check if it's an animated GIF is_animated = hasattr(image, 'n_frames') and image.n_frames > 1 if is_animated: st.info(f"Animated GIF detected with {image.n_frames} frames. Processing may take longer.") elif image.width * image.height > 2000000: # More than 2 million pixels st.warning(f"Large image detected ({image.width}x{image.height}). Processing may take longer.") # Create templates directory if it doesn't exist ensure_directories() # Save as template template_path = os.path.join(DEFAULT_TEMPLATES_DIR, "main_template.gif" if is_animated else "main_template.png") image.save(template_path) st.success("Template updated! Tags will now progressively reveal this image.") # Clear the current mask to start fresh mask_path = os.path.join(DEFAULT_MOSAICS_DIR, "main_mosaic_mask.png") if os.path.exists(mask_path): os.remove(mask_path) # Reinitialize the mosaic if 'tag_mosaic' in st.session_state: del st.session_state.tag_mosaic except Exception as e: st.error(f"Error processing image: {e}") # Initialize the mosaic if not already in session state if 'tag_mosaic' not in st.session_state: # Try to load the total tags count from metadata if available total_tags = 70527 # Default try: if hasattr(st.session_state, 'model') and hasattr(st.session_state.model, 'dataset'): if hasattr(st.session_state.model.dataset, 'tag_to_idx'): total_tags = len(st.session_state.model.dataset.tag_to_idx) except Exception as e: print(f"Error getting tag count from metadata: {e}") # Check for animated template and use appropriate class template_path = os.path.join(DEFAULT_TEMPLATES_DIR, "main_template.gif") if os.path.exists(template_path): # Try to open as GIF and check if animated try: img = Image.open(template_path) is_animated = hasattr(img, 'n_frames') and img.n_frames > 1 if is_animated: # Create the animated reveal mosaic st.session_state.tag_mosaic = AnimatedRevealMosaic( total_tags=total_tags, template_path=template_path, mosaic_name="main" ) print("Using AnimatedRevealMosaic") else: # Fallback to standard reveal mosaic st.session_state.tag_mosaic = RevealMosaic( total_tags=total_tags, mosaic_name="main" ) except Exception as e: print(f"Error checking animation: {e}") # Fallback to standard reveal mosaic st.session_state.tag_mosaic = RevealMosaic( total_tags=total_tags, mosaic_name="main" ) else: # No animated GIF template, use standard reveal mosaic st.session_state.tag_mosaic = RevealMosaic( total_tags=total_tags, mosaic_name="main" ) # Get the mosaic from session state mosaic = st.session_state.tag_mosaic # Make sure processed_tags is initialized if not hasattr(mosaic, 'processed_tags'): mosaic.processed_tags = set() # Display milestone tracker for main collection at the top if hasattr(st.session_state, 'collected_tags'): # Import the milestone tracker display function if needed from series_mosaics import display_milestone_tracker display_milestone_tracker("main", st.session_state.collected_tags, mosaic.total_tags) # Add update button update_requested = st.button("🔄 Update Mosaic") # Display the manually update message if not update_requested: st.info("Click the 'Update Mosaic' button to process new tag discoveries and update the image.") # Update the mosaic with the latest collected tags only if requested newly_revealed = 0 if update_requested and hasattr(st.session_state, 'collected_tags'): # Show processing spinner with st.spinner("Processing tag discoveries and updating mosaic..."): # Get optional metadata if available metadata = st.session_state.model.dataset if hasattr(st.session_state, 'model') else None newly_revealed = mosaic.update_with_tags(st.session_state.collected_tags, metadata, force_update=True) # Check for milestone rewards after updating from series_mosaics import check_and_award_milestone_rewards # Import the reward function # For main collection, use total model tags as the total (if available) total_main_tags = mosaic.total_tags milestone, reward = check_and_award_milestone_rewards("main", st.session_state.collected_tags, total_main_tags) # Show appropriate messages based on update results if milestone is not None: # Show milestone achievement message with celebration st.balloons() st.success(f"🏆 MILESTONE ACHIEVED! {milestone}% Completion of Main Collection!") st.success(f"Rewarded with {reward} {ENKEPHALIN_ICON} {ENKEPHALIN_CURRENCY_NAME}!") # Force a rerun to update the UI with new enkephalin st.rerun() elif newly_revealed > 0: st.success(f"Successfully updated! Revealed {newly_revealed} new pixels.") else: st.info("No new pixels to reveal.") # Get mosaic stats stats = mosaic.get_stats() # Show completion stats col1, col2 = st.columns(2) with col1: st.write(f"**Completion:** {stats['completion_percentage']:.2f}%") st.write(f"**Pixels Revealed:** {stats['revealed_pixels']} / {stats['total_pixels']}") with col2: st.write(f"**Status:** {stats['completion_pattern']}") if newly_revealed > 0: st.write(f"**Newly Revealed:** {newly_revealed} pixels") # Display the mosaic image mosaic_img = mosaic.get_image() # Check if we have an animated mosaic if hasattr(mosaic, 'is_animated') and mosaic.is_animated and isinstance(mosaic_img, list): # Convert animated frames to GIF for display img_bytes = io.BytesIO() # Save as animated GIF mosaic_img[0].save( img_bytes, format='GIF', save_all=True, append_images=mosaic_img[1:], duration=mosaic.frame_durations, loop=0 ) img_bytes.seek(0) st.image(img_bytes, caption="Your Tag Collection Mosaic - Each discovery reveals more of the hidden image", use_container_width=True) else: # Handle static image as before img_bytes = io.BytesIO() mosaic_img.save(img_bytes, format='PNG') img_bytes.seek(0) st.image(img_bytes, caption="Your Tag Collection Mosaic - Each discovery reveals more of the hidden image", use_container_width=True) # Show legend for rarities st.write("**Rarity Legend:**") cols = st.columns(len(RARITY_LEVELS)) for i, (rarity, info) in enumerate(RARITY_LEVELS.items()): with cols[i]: st.markdown( f"
{rarity}", unsafe_allow_html=True ) # Show recently added tags if mosaic.highlighted_tags: with st.expander("Recently Added Tags", expanded=False): for tag, _, _, rarity in mosaic.highlighted_tags: color = RARITY_LEVELS.get(rarity, {}).get("color", "#AAAAAA") st.markdown( f"{tag}", unsafe_allow_html=True )