File size: 39,043 Bytes
29b445b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision.models import efficientnet_v2_l, EfficientNet_V2_L_Weights
from PIL import Image
from typing import Optional
import torchvision.transforms as transforms
import os
import json
class InitialOnlyImageTagger(nn.Module):
"""
A lightweight version of ImageTagger that only includes the backbone and initial classifier.
This model uses significantly less VRAM than the full model.
"""
def __init__(self, total_tags, dataset, model_name='efficientnet_v2_l',
dropout=0.1, pretrained=True):
super().__init__()
# Debug and stats flags
self._flags = {
'debug': False,
'model_stats': False
}
# Core model config
self.dataset = dataset
self.embedding_dim = 1280 # Fixed to EfficientNetV2-L output dimension
# Initialize backbone
if model_name == 'efficientnet_v2_l':
weights = EfficientNet_V2_L_Weights.DEFAULT if pretrained else None
self.backbone = efficientnet_v2_l(weights=weights)
self.backbone.classifier = nn.Identity()
# Spatial pooling only - no projection
self.spatial_pool = nn.AdaptiveAvgPool2d((1, 1))
# Initial tag prediction with bottleneck
self.initial_classifier = nn.Sequential(
nn.Linear(self.embedding_dim, self.embedding_dim * 2),
nn.LayerNorm(self.embedding_dim * 2),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(self.embedding_dim * 2, self.embedding_dim),
nn.LayerNorm(self.embedding_dim),
nn.GELU(),
nn.Linear(self.embedding_dim, total_tags)
)
# Temperature scaling
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
@property
def debug(self):
return self._flags['debug']
@debug.setter
def debug(self, value):
self._flags['debug'] = value
@property
def model_stats(self):
return self._flags['model_stats']
@model_stats.setter
def model_stats(self, value):
self._flags['model_stats'] = value
def preprocess_image(self, image_path, image_size=512):
"""Process an image for inference using same preprocessing as training"""
if not os.path.exists(image_path):
raise ValueError(f"Image not found at path: {image_path}")
# Initialize the same transform used during training
transform = transforms.Compose([
transforms.ToTensor(),
])
try:
with Image.open(image_path) as img:
# Convert RGBA or Palette images to RGB
if img.mode in ('RGBA', 'P'):
img = img.convert('RGB')
# Get original dimensions
width, height = img.size
aspect_ratio = width / height
# Calculate new dimensions to maintain aspect ratio
if aspect_ratio > 1:
new_width = image_size
new_height = int(new_width / aspect_ratio)
else:
new_height = image_size
new_width = int(new_height * aspect_ratio)
# Resize with LANCZOS filter
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding
new_image = Image.new('RGB', (image_size, image_size), (0, 0, 0))
paste_x = (image_size - new_width) // 2
paste_y = (image_size - new_height) // 2
new_image.paste(img, (paste_x, paste_y))
# Apply transforms (without normalization)
img_tensor = transform(new_image)
return img_tensor
except Exception as e:
raise Exception(f"Error processing {image_path}: {str(e)}")
def forward(self, x):
"""Forward pass with only the initial predictions"""
# Image Feature Extraction
features = self.backbone.features(x)
features = self.spatial_pool(features).squeeze(-1).squeeze(-1)
# Initial Tag Predictions
initial_logits = self.initial_classifier(features)
initial_preds = torch.clamp(initial_logits / self.temperature, min=-15.0, max=15.0)
# For API compatibility with the full model, return the same predictions twice
return initial_preds, initial_preds
def predict(self, image_path, threshold=0.325, category_thresholds=None):
"""
Run inference on an image with support for category-specific thresholds.
"""
# Preprocess the image
img_tensor = self.preprocess_image(image_path).unsqueeze(0)
# Move to the same device as model and convert to half precision
device = next(self.parameters()).device
dtype = next(self.parameters()).dtype # Match model's precision
img_tensor = img_tensor.to(device, dtype=dtype)
# Run inference
with torch.no_grad():
initial_preds, _ = self.forward(img_tensor)
# Apply sigmoid to get probabilities
initial_probs = torch.sigmoid(initial_preds)
# Apply thresholds
if category_thresholds:
# Create binary prediction tensors
initial_binary = torch.zeros_like(initial_probs)
# Apply thresholds by category
for category, cat_threshold in category_thresholds.items():
# Create a mask for tags in this category
category_mask = torch.zeros_like(initial_probs, dtype=torch.bool)
# Find indices for this category
for tag_idx in range(initial_probs.size(-1)):
try:
_, tag_category = self.dataset.get_tag_info(tag_idx)
if tag_category == category:
category_mask[:, tag_idx] = True
except:
continue
# Apply threshold only to tags in this category
cat_threshold_tensor = torch.tensor(cat_threshold, device=device, dtype=dtype)
initial_binary[category_mask] = (initial_probs[category_mask] >= cat_threshold_tensor).to(dtype)
predictions = initial_binary
else:
# Use the same threshold for all tags
threshold_tensor = torch.tensor(threshold, device=device, dtype=dtype)
predictions = (initial_probs >= threshold_tensor).to(dtype)
# Return the same probabilities for both initial and refined for API compatibility
return {
'initial_probabilities': initial_probs,
'refined_probabilities': initial_probs, # Same as initial for compatibility
'predictions': predictions
}
def get_tags_from_predictions(self, predictions, include_probabilities=True):
"""
Convert model predictions to human-readable tags grouped by category.
"""
# Get non-zero predictions
if predictions.dim() > 1:
predictions = predictions[0] # Remove batch dimension
# Get indices of positive predictions
indices = torch.where(predictions > 0)[0].cpu().tolist()
# Group by category
result = {}
for idx in indices:
tag_name, category = self.dataset.get_tag_info(idx)
if category not in result:
result[category] = []
if include_probabilities:
prob = predictions[idx].item()
result[category].append((tag_name, prob))
else:
result[category].append(tag_name)
# Sort tags by probability within each category
if include_probabilities:
for category in result:
result[category] = sorted(result[category], key=lambda x: x[1], reverse=True)
return result
class FlashAttention(nn.Module):
def __init__(self, dim, num_heads=8, dropout=0.1, batch_first=True):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.dropout = dropout
self.batch_first = batch_first
self.head_dim = dim // num_heads
assert self.head_dim * num_heads == dim, "dim must be divisible by num_heads"
self.q_proj = nn.Linear(dim, dim, bias=False)
self.k_proj = nn.Linear(dim, dim, bias=False)
self.v_proj = nn.Linear(dim, dim, bias=False)
self.out_proj = nn.Linear(dim, dim, bias=False)
for proj in [self.q_proj, self.k_proj, self.v_proj, self.out_proj]:
nn.init.xavier_uniform_(proj.weight, gain=0.1)
self.scale = self.head_dim ** -0.5
self.debug = False
def _debug_print(self, name, tensor):
"""Debug helper"""
if self.debug:
print(f"\n{name}:")
print(f"Shape: {tensor.shape}")
print(f"Device: {tensor.device}")
print(f"Dtype: {tensor.dtype}")
if tensor.is_floating_point():
with torch.no_grad():
print(f"Range: [{tensor.min().item():.3f}, {tensor.max().item():.3f}]")
print(f"Mean: {tensor.mean().item():.3f}")
print(f"Std: {tensor.std().item():.3f}")
def _reshape_for_flash(self, x: torch.Tensor) -> torch.Tensor:
"""Reshape input tensor for flash attention format"""
batch_size, seq_len, _ = x.size()
x = x.view(batch_size, seq_len, self.num_heads, self.head_dim)
x = x.transpose(1, 2) # [B, H, S, D]
return x.contiguous()
def forward(self, query: torch.Tensor, key: Optional[torch.Tensor] = None,
value: Optional[torch.Tensor] = None,
mask: Optional[torch.Tensor] = None) -> torch.Tensor:
"""Forward pass with flash attention"""
if self.debug:
print("\nFlashAttention Forward Pass")
batch_size = query.size(0)
# Use query as key/value if not provided
key = query if key is None else key
value = query if value is None else value
# Project inputs
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
if self.debug:
self._debug_print("Query before reshape", q)
# Reshape for attention [B, H, S, D]
q = self._reshape_for_flash(q)
k = self._reshape_for_flash(k)
v = self._reshape_for_flash(v)
if self.debug:
self._debug_print("Query after reshape", q)
# Handle masking
if mask is not None:
# First convert mask to proper shape based on input dimensionality
if mask.dim() == 2: # [B, S]
mask = mask.view(batch_size, 1, -1, 1)
elif mask.dim() == 3: # [B, S, S]
mask = mask.view(batch_size, 1, mask.size(1), mask.size(2))
elif mask.dim() == 5: # [B, 1, S, S, S]
mask = mask.squeeze(1).view(batch_size, 1, mask.size(2), mask.size(3))
# Ensure mask is float16 if we're using float16
mask = mask.to(q.dtype)
if self.debug:
self._debug_print("Prepared mask", mask)
print(f"q shape: {q.shape}, mask shape: {mask.shape}")
# Create attention mask that covers the full sequence length
seq_len = q.size(2)
if mask.size(-1) != seq_len:
# Pad or trim mask to match sequence length
new_mask = torch.zeros(batch_size, 1, seq_len, seq_len,
device=mask.device, dtype=mask.dtype)
min_len = min(seq_len, mask.size(-1))
new_mask[..., :min_len, :min_len] = mask[..., :min_len, :min_len]
mask = new_mask
# Create key padding mask
key_padding_mask = mask.squeeze(1).sum(-1) > 0
key_padding_mask = key_padding_mask.view(batch_size, 1, -1, 1)
# Apply the key padding mask
k = k * key_padding_mask
v = v * key_padding_mask
if self.debug:
self._debug_print("Query before attention", q)
self._debug_print("Key before attention", k)
self._debug_print("Value before attention", v)
# Run flash attention
dropout_p = self.dropout if self.training else 0.0
output = flash_attn_func(
q, k, v,
dropout_p=dropout_p,
softmax_scale=self.scale,
causal=False
)
if self.debug:
self._debug_print("Output after attention", output)
# Reshape output [B, H, S, D] -> [B, S, H, D] -> [B, S, D]
output = output.transpose(1, 2).contiguous()
output = output.view(batch_size, -1, self.dim)
# Final projection
output = self.out_proj(output)
if self.debug:
self._debug_print("Final output", output)
return output
class OptimizedTagEmbedding(nn.Module):
def __init__(self, num_tags, embedding_dim, num_heads=8, dropout=0.1):
super().__init__()
# Single shared embedding for all tags
self.embedding = nn.Embedding(num_tags, embedding_dim)
self.attention = FlashAttention(embedding_dim, num_heads, dropout)
self.norm1 = nn.LayerNorm(embedding_dim)
self.norm2 = nn.LayerNorm(embedding_dim)
# Single importance weighting for all tags
self.tag_importance = nn.Parameter(torch.ones(num_tags) * 0.1)
# Projection layers for unified tag context
self.context_proj = nn.Sequential(
nn.Linear(embedding_dim, embedding_dim * 2),
nn.LayerNorm(embedding_dim * 2),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(embedding_dim * 2, embedding_dim),
nn.LayerNorm(embedding_dim)
)
self.importance_scale = nn.Parameter(torch.tensor(0.1))
self.context_scale = nn.Parameter(torch.tensor(1.0))
self.debug = False
def _debug_print(self, name, tensor, extra_info=None):
"""Memory efficient debug printing with type handling"""
if self.debug:
print(f"\n{name}:")
print(f"- Shape: {tensor.shape}")
if isinstance(tensor, torch.Tensor):
with torch.no_grad():
print(f"- Device: {tensor.device}")
print(f"- Dtype: {tensor.dtype}")
# Convert to float32 for statistics if needed
if tensor.dtype not in [torch.float16, torch.float32, torch.float64]:
calc_tensor = tensor.float()
else:
calc_tensor = tensor
try:
min_val = calc_tensor.min().item()
max_val = calc_tensor.max().item()
mean_val = calc_tensor.mean().item()
std_val = calc_tensor.std().item()
norm_val = torch.norm(calc_tensor).item()
print(f"- Value range: [{min_val:.3f}, {max_val:.3f}]")
print(f"- Mean: {mean_val:.3f}")
print(f"- Std: {std_val:.3f}")
print(f"- L2 Norm: {norm_val:.3f}")
if extra_info:
print(f"- Additional info: {extra_info}")
except Exception as e:
print(f"- Could not compute statistics: {str(e)}")
def _debug_tensor(self, name, tensor):
"""Debug helper with dtype-specific analysis"""
if self.debug and isinstance(tensor, torch.Tensor):
print(f"\n{name}:")
print(f"- Shape: {tensor.shape}")
print(f"- Device: {tensor.device}")
print(f"- Dtype: {tensor.dtype}")
with torch.no_grad():
has_nan = torch.isnan(tensor).any().item() if tensor.is_floating_point() else False
has_inf = torch.isinf(tensor).any().item() if tensor.is_floating_point() else False
print(f"- Contains NaN: {has_nan}")
print(f"- Contains Inf: {has_inf}")
# Different stats for different dtypes
if tensor.is_floating_point():
print(f"- Range: [{tensor.min().item():.3f}, {tensor.max().item():.3f}]")
print(f"- Mean: {tensor.mean().item():.3f}")
print(f"- Std: {tensor.std().item():.3f}")
else:
# For integer tensors
print(f"- Range: [{tensor.min().item()}, {tensor.max().item()}]")
print(f"- Unique values: {tensor.unique().numel()}")
def _process_category(self, indices, masks):
"""Process a single category of tags"""
# Get embeddings for this category
embeddings = self.embedding(indices)
if self.debug:
self._debug_tensor("Category embeddings", embeddings)
# Apply importance weights
importance = torch.sigmoid(self.tag_importance) * self.importance_scale
importance = torch.clamp(importance, min=0.01, max=10.0)
importance_weights = importance[indices].unsqueeze(-1)
# Apply and normalize
embeddings = embeddings * importance_weights
embeddings = self.norm1(embeddings)
# Apply attention if we have more than one tag
if embeddings.size(1) > 1:
if masks is not None:
attention_mask = torch.einsum('bi,bj->bij', masks, masks)
attended = self.attention(embeddings, mask=attention_mask)
else:
attended = self.attention(embeddings)
embeddings = self.norm2(attended)
# Pool embeddings with masking
if masks is not None:
masked_embeddings = embeddings * masks.unsqueeze(-1)
pooled = masked_embeddings.sum(dim=1) / masks.sum(dim=1, keepdim=True).clamp(min=1.0)
else:
pooled = embeddings.mean(dim=1)
return pooled, embeddings
def forward(self, tag_indices_dict, tag_masks_dict=None):
"""
Process all tags in a unified embedding space
Args:
tag_indices_dict: dict of {category: tensor of indices}
tag_masks_dict: dict of {category: tensor of masks}
"""
if self.debug:
print("\nOptimizedTagEmbedding Forward Pass")
# Concatenate all indices and masks
all_indices = []
all_masks = []
batch_size = None
for category, indices in tag_indices_dict.items():
if batch_size is None:
batch_size = indices.size(0)
all_indices.append(indices)
if tag_masks_dict:
all_masks.append(tag_masks_dict[category])
# Stack along sequence dimension
combined_indices = torch.cat(all_indices, dim=1) # [B, total_seq_len]
if tag_masks_dict:
combined_masks = torch.cat(all_masks, dim=1) # [B, total_seq_len]
if self.debug:
self._debug_tensor("Combined indices", combined_indices)
if tag_masks_dict:
self._debug_tensor("Combined masks", combined_masks)
# Get embeddings for all tags using shared embedding
embeddings = self.embedding(combined_indices) # [B, total_seq_len, D]
if self.debug:
self._debug_tensor("Base embeddings", embeddings)
# Apply unified importance weighting
importance = torch.sigmoid(self.tag_importance) * self.importance_scale
importance = torch.clamp(importance, min=0.01, max=10.0)
importance_weights = importance[combined_indices].unsqueeze(-1)
# Apply and normalize importance weights
embeddings = embeddings * importance_weights
embeddings = self.norm1(embeddings)
if self.debug:
self._debug_tensor("Weighted embeddings", embeddings)
# Apply attention across all tags together
if tag_masks_dict:
attention_mask = torch.einsum('bi,bj->bij', combined_masks, combined_masks)
attended = self.attention(embeddings, mask=attention_mask)
else:
attended = self.attention(embeddings)
attended = self.norm2(attended)
if self.debug:
self._debug_tensor("Attended embeddings", attended)
# Global pooling with masking
if tag_masks_dict:
masked_embeddings = attended * combined_masks.unsqueeze(-1)
tag_context = masked_embeddings.sum(dim=1) / combined_masks.sum(dim=1, keepdim=True).clamp(min=1.0)
else:
tag_context = attended.mean(dim=1)
# Project and scale context
tag_context = self.context_proj(tag_context)
context_scale = torch.clamp(self.context_scale, min=0.1, max=10.0)
tag_context = tag_context * context_scale
if self.debug:
self._debug_tensor("Final tag context", tag_context)
return tag_context, attended
class TagDataset:
"""Lightweight dataset wrapper for inference only"""
def __init__(self, total_tags, idx_to_tag, tag_to_category):
self.total_tags = total_tags
self.idx_to_tag = idx_to_tag if isinstance(idx_to_tag, dict) else {int(k): v for k, v in idx_to_tag.items()}
self.tag_to_category = tag_to_category
def get_tag_info(self, idx):
"""Get tag name and category for a given index"""
tag_name = self.idx_to_tag.get(idx, f"unknown-{idx}")
category = self.tag_to_category.get(tag_name, "general")
return tag_name, category
class ImageTagger(nn.Module):
def __init__(self, total_tags, dataset, model_name='efficientnet_v2_l',
num_heads=16, dropout=0.1, pretrained=True,
tag_context_size=256):
super().__init__()
# Debug and stats flags
self._flags = {
'debug': False,
'model_stats': False
}
# Core model config
self.dataset = dataset
self.tag_context_size = tag_context_size
self.embedding_dim = 1280 # Fixed to EfficientNetV2-L output dimension
# Initialize backbone
if model_name == 'efficientnet_v2_l':
weights = EfficientNet_V2_L_Weights.DEFAULT if pretrained else None
self.backbone = efficientnet_v2_l(weights=weights)
self.backbone.classifier = nn.Identity()
# Spatial pooling only - no projection
self.spatial_pool = nn.AdaptiveAvgPool2d((1, 1))
# Initial tag prediction with bottleneck
self.initial_classifier = nn.Sequential(
nn.Linear(self.embedding_dim, self.embedding_dim * 2),
nn.LayerNorm(self.embedding_dim * 2),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(self.embedding_dim * 2, self.embedding_dim),
nn.LayerNorm(self.embedding_dim),
nn.GELU(),
nn.Linear(self.embedding_dim, total_tags)
)
# Tag embeddings at full dimension
self.tag_embedding = nn.Embedding(total_tags, self.embedding_dim)
self.tag_attention = FlashAttention(self.embedding_dim, num_heads, dropout)
self.tag_norm = nn.LayerNorm(self.embedding_dim)
# Improved cross attention projection
self.cross_proj = nn.Sequential(
nn.Linear(self.embedding_dim, self.embedding_dim * 2),
nn.LayerNorm(self.embedding_dim * 2),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(self.embedding_dim * 2, self.embedding_dim)
)
# Cross attention at full dimension
self.cross_attention = FlashAttention(self.embedding_dim, num_heads, dropout)
self.cross_norm = nn.LayerNorm(self.embedding_dim)
# Refined classifier with improved bottleneck
self.refined_classifier = nn.Sequential(
nn.Linear(self.embedding_dim * 2, self.embedding_dim * 2), # Doubled input size for residual
nn.LayerNorm(self.embedding_dim * 2),
nn.GELU(),
nn.Dropout(dropout),
nn.Linear(self.embedding_dim * 2, self.embedding_dim),
nn.LayerNorm(self.embedding_dim),
nn.GELU(),
nn.Linear(self.embedding_dim, total_tags)
)
# Temperature scaling
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def _get_selected_tags(self, logits):
"""Select top-K tags based on prediction confidence"""
# Apply sigmoid to get probabilities
probs = torch.sigmoid(logits)
# Get top-K predictions for each image in batch
batch_size = logits.size(0)
topk_values, topk_indices = torch.topk(
probs, k=self.tag_context_size, dim=1, largest=True, sorted=True
)
return topk_indices, topk_values
@property
def debug(self):
return self._flags['debug']
@debug.setter
def debug(self, value):
self._flags['debug'] = value
@property
def model_stats(self):
return self._flags['model_stats']
@model_stats.setter
def model_stats(self, value):
self._flags['model_stats'] = value
def preprocess_image(self, image_path, image_size=512):
"""Process an image for inference using same preprocessing as training"""
if not os.path.exists(image_path):
raise ValueError(f"Image not found at path: {image_path}")
# Initialize the same transform used during training
transform = transforms.Compose([
transforms.ToTensor(),
])
try:
with Image.open(image_path) as img:
# Convert RGBA or Palette images to RGB
if img.mode in ('RGBA', 'P'):
img = img.convert('RGB')
# Get original dimensions
width, height = img.size
aspect_ratio = width / height
# Calculate new dimensions to maintain aspect ratio
if aspect_ratio > 1:
new_width = image_size
new_height = int(new_width / aspect_ratio)
else:
new_height = image_size
new_width = int(new_height * aspect_ratio)
# Resize with LANCZOS filter
img = img.resize((new_width, new_height), Image.Resampling.LANCZOS)
# Create new image with padding
new_image = Image.new('RGB', (image_size, image_size), (0, 0, 0))
paste_x = (image_size - new_width) // 2
paste_y = (image_size - new_height) // 2
new_image.paste(img, (paste_x, paste_y))
# Apply transforms (without normalization)
img_tensor = transform(new_image)
return img_tensor
except Exception as e:
raise Exception(f"Error processing {image_path}: {str(e)}")
def forward(self, x):
"""Forward pass with simplified feature handling"""
# Initialize tracking dicts
model_stats = {} if self.model_stats else {}
debug_tensors = {} if self.debug else None
# 1. Image Feature Extraction
features = self.backbone.features(x)
features = self.spatial_pool(features).squeeze(-1).squeeze(-1)
# 2. Initial Tag Predictions
initial_logits = self.initial_classifier(features)
initial_preds = torch.clamp(initial_logits / self.temperature, min=-15.0, max=15.0)
# 3. Tag Selection & Embedding (simplified)
pred_tag_indices, _ = self._get_selected_tags(initial_preds)
tag_embeddings = self.tag_embedding(pred_tag_indices)
# 4. Self-Attention on Tags
attended_tags = self.tag_attention(tag_embeddings)
attended_tags = self.tag_norm(attended_tags)
# 5. Cross-Attention between Features and Tags
features_proj = self.cross_proj(features)
features_expanded = features_proj.unsqueeze(1).expand(-1, self.tag_context_size, -1)
cross_attended = self.cross_attention(features_expanded, attended_tags)
cross_attended = self.cross_norm(cross_attended)
# 6. Feature Fusion with Residual Connection
fused_features = cross_attended.mean(dim=1) # Average across tag dimension
# Concatenate original and attended features
combined_features = torch.cat([features, fused_features], dim=-1)
# 7. Refined Predictions
refined_logits = self.refined_classifier(combined_features)
refined_preds = torch.clamp(refined_logits / self.temperature, min=-15.0, max=15.0)
# Return both prediction sets
return initial_preds, refined_preds
def predict(self, image_path, threshold=0.325, category_thresholds=None):
"""
Run inference on an image with support for category-specific thresholds.
"""
# Preprocess the image
img_tensor = self.preprocess_image(image_path).unsqueeze(0)
# Move to the same device as model and convert to half precision
device = next(self.parameters()).device
dtype = next(self.parameters()).dtype # Match model's precision
img_tensor = img_tensor.to(device, dtype=dtype)
# Run inference
with torch.no_grad():
initial_preds, refined_preds = self.forward(img_tensor)
# Apply sigmoid to get probabilities
initial_probs = torch.sigmoid(initial_preds)
refined_probs = torch.sigmoid(refined_preds)
# Apply thresholds
if category_thresholds:
# Create binary prediction tensors
refined_binary = torch.zeros_like(refined_probs)
# Apply thresholds by category
for category, cat_threshold in category_thresholds.items():
# Create a mask for tags in this category
category_mask = torch.zeros_like(refined_probs, dtype=torch.bool)
# Find indices for this category
for tag_idx in range(refined_probs.size(-1)):
try:
_, tag_category = self.dataset.get_tag_info(tag_idx)
if tag_category == category:
category_mask[:, tag_idx] = True
except:
continue
# Apply threshold only to tags in this category - ensure dtype consistency
cat_threshold_tensor = torch.tensor(cat_threshold, device=device, dtype=dtype)
refined_binary[category_mask] = (refined_probs[category_mask] >= cat_threshold_tensor).to(dtype)
predictions = refined_binary
else:
# Use the same threshold for all tags
threshold_tensor = torch.tensor(threshold, device=device, dtype=dtype)
predictions = (refined_probs >= threshold_tensor).to(dtype)
# Return both probabilities and thresholded predictions
return {
'initial_probabilities': initial_probs,
'refined_probabilities': refined_probs,
'predictions': predictions
}
def get_tags_from_predictions(self, predictions, include_probabilities=True):
"""
Convert model predictions to human-readable tags grouped by category.
"""
# Get non-zero predictions
if predictions.dim() > 1:
predictions = predictions[0] # Remove batch dimension
# Get indices of positive predictions
indices = torch.where(predictions > 0)[0].cpu().tolist()
# Group by category
result = {}
for idx in indices:
tag_name, category = self.dataset.get_tag_info(idx)
if category not in result:
result[category] = []
if include_probabilities:
prob = predictions[idx].item()
result[category].append((tag_name, prob))
else:
result[category].append(tag_name)
# Sort tags by probability within each category
if include_probabilities:
for category in result:
result[category] = sorted(result[category], key=lambda x: x[1], reverse=True)
return result
def load_model(model_dir, device='cuda'):
"""Load model with better error handling and warnings"""
print(f"Loading model from {model_dir}")
try:
# Load metadata
metadata_path = os.path.join(model_dir, "metadata.json")
if not os.path.exists(metadata_path):
raise FileNotFoundError(f"Metadata file not found at {metadata_path}")
with open(metadata_path, 'r') as f:
metadata = json.load(f)
# Load model info
model_info_path = os.path.join(model_dir, "model_info.json")
if os.path.exists(model_info_path):
with open(model_info_path, 'r') as f:
model_info = json.load(f)
else:
print("WARNING: Model info file not found, using default settings")
model_info = {
"tag_context_size": 256,
"num_heads": 16,
"precision": "float16"
}
# Create dataset wrapper
dataset = TagDataset(
total_tags=metadata['total_tags'],
idx_to_tag=metadata['idx_to_tag'],
tag_to_category=metadata['tag_to_category']
)
# Initialize model with exact settings from model_info
model = ImageTagger(
total_tags=metadata['total_tags'],
dataset=dataset,
num_heads=model_info.get('num_heads', 16),
tag_context_size=model_info.get('tag_context_size', 256),
pretrained=False
)
# Load weights
state_dict_path = os.path.join(model_dir, "model.pt")
if not os.path.exists(state_dict_path):
raise FileNotFoundError(f"Model state dict not found at {state_dict_path}")
state_dict = torch.load(state_dict_path, map_location=device)
# First try strict loading
try:
model.load_state_dict(state_dict, strict=True)
print("✓ Model state dict loaded with strict=True successfully")
except Exception as e:
print(f"! Strict loading failed: {str(e)}")
print("Attempting non-strict loading...")
# Try non-strict loading
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
print(f"Non-strict loading completed with:")
print(f"- {len(missing_keys)} missing keys")
print(f"- {len(unexpected_keys)} unexpected keys")
if len(missing_keys) > 0:
print(f"Sample missing keys: {missing_keys[:5]}")
if len(unexpected_keys) > 0:
print(f"Sample unexpected keys: {unexpected_keys[:5]}")
# Move model to device
model = model.to(device)
# Set to half precision if needed
if model_info.get('precision') == 'float16':
model = model.half()
print("✓ Model converted to half precision")
# Set to eval mode
model.eval()
print("✓ Model set to evaluation mode")
# Verify parameter dtype
param_dtype = next(model.parameters()).dtype
print(f"✓ Model loaded with precision: {param_dtype}")
return model, dataset
except Exception as e:
print(f"ERROR loading model: {str(e)}")
import traceback
traceback.print_exc()
raise
# Example usage
if __name__ == "__main__":
import sys
# Get model directory from command line or use default
model_dir = sys.argv[1] if len(sys.argv) > 1 else "./exported_model"
# Load model
model, dataset, thresholds = load_model(model_dir)
# Display info
print(f"\nModel information:")
print(f" Total tags: {dataset.total_tags}")
print(f" Device: {next(model.parameters()).device}")
print(f" Precision: {next(model.parameters()).dtype}")
# Test on an image if provided
if len(sys.argv) > 2:
image_path = sys.argv[2]
print(f"\nRunning inference on {image_path}")
# Use category thresholds if available
if thresholds and 'categories' in thresholds:
category_thresholds = {cat: opt['balanced']['threshold']
for cat, opt in thresholds['categories'].items()}
results = model.predict(image_path, category_thresholds=category_thresholds)
else:
results = model.predict(image_path)
# Get tags
tags = model.get_tags_from_predictions(results['predictions'])
# Print tags by category
print("\nPredicted tags:")
for category, category_tags in tags.items():
print(f"\n{category.capitalize()}:")
for tag, prob in category_tags:
print(f" {tag}: {prob:.3f}") |