Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
---
|
2 |
base_model: unsloth/Llama-3.2-1B-Instruct
|
3 |
-
library_name:
|
4 |
model_name: llama-3.2-1b-it-brainrot
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
- trl
|
8 |
- sft
|
9 |
licence: license
|
|
|
|
|
10 |
---
|
11 |
|
12 |
# Model Card for llama-3.2-1b-it-brainrot
|
@@ -17,18 +19,46 @@ It has been trained using [TRL](https://github.com/huggingface/trl).
|
|
17 |
## Quick start
|
18 |
|
19 |
```python
|
20 |
-
from
|
|
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
print(output["generated_text"])
|
26 |
-
```
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
|
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
This model was trained with SFT.
|
34 |
|
@@ -42,8 +72,6 @@ This model was trained with SFT.
|
|
42 |
|
43 |
## Citations
|
44 |
|
45 |
-
|
46 |
-
|
47 |
Cite TRL as:
|
48 |
|
49 |
```bibtex
|
|
|
1 |
---
|
2 |
base_model: unsloth/Llama-3.2-1B-Instruct
|
3 |
+
library_name: peft
|
4 |
model_name: llama-3.2-1b-it-brainrot
|
5 |
tags:
|
6 |
- generated_from_trainer
|
7 |
- trl
|
8 |
- sft
|
9 |
licence: license
|
10 |
+
datasets:
|
11 |
+
- ShreeshaBhat1004/Brain-rot
|
12 |
---
|
13 |
|
14 |
# Model Card for llama-3.2-1b-it-brainrot
|
|
|
19 |
## Quick start
|
20 |
|
21 |
```python
|
22 |
+
from peft import PeftModel
|
23 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
24 |
|
25 |
+
base_model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
|
26 |
+
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B-Instruct")
|
27 |
+
model = PeftModel.from_pretrained(base_model, "CallmeKaito/llama-3.2-1b-it-brainrot")
|
|
|
|
|
28 |
|
29 |
+
# Create chat template
|
30 |
+
messages = [
|
31 |
+
{"role": "system", "content": "ayoooo, you be Llama, big brain bot built by dem Meta wizards, no cap. Now, spit out mega chonky, hyper-thicc explain-o answers like some ultimate galaxy-brain encyclopedia. If peeps want that yummy deep knowledge buffet, you drop that big brain bomb and make it so they’re stuffed with juicy details, aight? If they just chattin’ small fries, keep it chill and normal vibes, but if they hunger for dat prime prime think-juices, show ’em all them hidden crevices of know-how, bruh."},
|
32 |
+
{"role": "user", "content": "homie tell me a lil more about the bronx situation and the wild stuff happening in nyc?"}
|
33 |
+
]
|
34 |
+
|
35 |
+
# Generate prompt
|
36 |
+
prompt = tokenizer.apply_chat_template(
|
37 |
+
messages,
|
38 |
+
tokenize=False,
|
39 |
+
add_generation_prompt=True
|
40 |
+
)
|
41 |
|
42 |
+
# Tokenize inputs
|
43 |
+
inputs = tokenizer(prompt, return_tensors="pt").to("cuda")
|
44 |
|
45 |
+
# Generate response
|
46 |
+
outputs = model.generate(
|
47 |
+
**inputs,
|
48 |
+
max_new_tokens=150,
|
49 |
+
eos_token_id=tokenizer.eos_token_id,
|
50 |
+
do_sample=True,
|
51 |
+
temperature=0.7,
|
52 |
+
top_p=0.9,
|
53 |
+
)
|
54 |
+
|
55 |
+
# Decode and format output
|
56 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
57 |
+
response = full_response.split("assistant\n")[-1].strip()
|
58 |
+
print(response)
|
59 |
+
```
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
|
63 |
This model was trained with SFT.
|
64 |
|
|
|
72 |
|
73 |
## Citations
|
74 |
|
|
|
|
|
75 |
Cite TRL as:
|
76 |
|
77 |
```bibtex
|