from typing import Optional import math import torch import torch.nn as nn from torch import Tensor from torch.nn import functional as F from einops import rearrange from collections import namedtuple from torch.utils.checkpoint import checkpoint from typing import Optional, Tuple, Union from .configuration_muddformer import MUDDFormerConfig #try: # from .configuration_muddformer import MUDDFormerConfig #except: # from configuration_muddformer import MUDDFormerConfig from transformers.modeling_utils import PreTrainedModel def find_multiple(n: int, k: int) -> int: if n % k == 0: return n return n + k - (n % k) class KVCache(nn.Module): def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim, dtype=torch.bfloat16): super().__init__() self.seq_length = max_seq_length cache_shape = (max_batch_size, n_heads, self.seq_length, head_dim) self.register_buffer('k_cache', torch.zeros(cache_shape, dtype=dtype)) self.register_buffer('v_cache', torch.zeros(cache_shape, dtype=dtype)) def update(self, input_pos, k_val, v_val): # input_pos: [S], k_val: [B, H, S, D] assert input_pos.shape[0] == k_val.shape[2] B,N,S,D = v_val.shape k_out = self.k_cache v_out = self.v_cache k_out[:, :, input_pos] = k_val v_out[:, :, input_pos] = v_val return k_out, v_out class LayerCache(nn.Module): def __init__(self, max_batch_size, num_layers, model_dim, dtype=torch.bfloat16): super().__init__() cache_shape = (num_layers+1, max_batch_size, 1, model_dim) # LBTD self.register_buffer('layer_cache', torch.zeros(cache_shape, dtype=dtype)) def update(self, x, lidx): self.layer_cache[lidx] = x return self.layer_cache[:lidx+1] class MultiwayDynamicDenseBlock(nn.Module): def __init__(self, config: MUDDFormerConfig, lidx: int, last_layer=False) -> None: super().__init__() self.norm = RMSnormNoscale(epsilon=config.norm_eps) self.C = len(config.dense_type) if not last_layer else 1 self.lidx = lidx l = lidx + 2 hid_dim, out_dim = l * self.C, l * self.C if last_layer and config.expand_last: hid_dim *= 4 if config.round64: hid_dim = (hid_dim// 64 +1) * 64 self.w1 = nn.Linear(config.dim, hid_dim, bias=False) self.act = nn.GELU() self.w2 = nn.Linear(hid_dim, out_dim, bias=False) def forward(self, x: Tensor) -> Tensor: x = self.norm(x) dw = self.w2(self.act(self.w1(x))) # BTD->BTL dw = rearrange(dw, 'B T (C L) -> C B T L', C=self.C) return dw def layer_mix(self, hids, dw)-> Tensor: x = tuple([sum(dw[cidx,:,:,j,None] * hids[j] for j in range(self.lidx+2)) for cidx in range(self.C)]) # BTL, LBTD-> BTD return x class MUDDFormer(PreTrainedModel): config_class=MUDDFormerConfig ''' MUDDFormer's implementation is adapted from https://github.com/pytorch-labs/gpt-fast/blob/main/model.py#L89 ''' def __init__(self, config: MUDDFormerConfig) -> None: super().__init__(config) self.config = config self.use_gradient_checkpointing = config.use_gradient_checkpointing self.is_training = config.is_training self.tok_embeddings = nn.Embedding(config.vocab_size, config.dim) self.layers = nn.ModuleList(TransformerBlock(config, lidx) for lidx in range(config.n_layer)) self.norm = RMSNorm(config.dim, eps=config.norm_eps) self.output = nn.Linear(config.dim, config.vocab_size, bias=False) C = len(self.config.dense_type) self.dense_bs = nn.ParameterList([nn.Parameter(data=torch.randn(C if lidx != config.n_layer-1 else 1, lidx+2)) for lidx in range(config.n_layer)]) self.layer_cache = None self.use_layer_cache = False if self.is_training else self.config.use_layer_cache self.stack_hidden = self.config.stack_hidden self.dynamic = self.config.dynamic_dense self.dense = self.config.dense if self.dynamic: self.dynamic_dense = nn.ModuleList([MultiwayDynamicDenseBlock(config, lidx, last_layer=lidx==config.n_layer-1) for lidx in range(config.n_layer)]) self.freqs_cis: Optional[Tensor] = None self.mask_cache: Optional[Tensor] = None self.max_batch_size = -1 self.max_seq_length = -1 def tie_weights(self): # placeholder return def setup_caches(self, max_batch_size, max_seq_length, dtype=torch.bfloat16): if self.max_seq_length >= max_seq_length and self.max_batch_size >= max_batch_size: return head_dim = self.config.dim // self.config.n_head max_seq_length = find_multiple(max_seq_length, 8) self.max_seq_length = max_seq_length self.max_batch_size = max_batch_size if not self.config.is_training: if self.use_layer_cache: self.layer_cache = LayerCache(max_batch_size, self.config.n_layer, self.config.dim, dtype=dtype) for b in self.layers: b.attention.kv_cache = KVCache(max_batch_size, max_seq_length, self.config.n_local_heads, head_dim, dtype=dtype) self.freqs_cis = precompute_freqs_cis(self.config.block_size, self.config.dim // self.config.n_head, self.config.rope_base).to(self.tok_embeddings.weight.device) self.causal_mask = torch.tril(torch.ones(self.max_seq_length, self.max_seq_length, dtype=torch.bool, device=self.tok_embeddings.weight.device)) def generate(self, input_ids, num_tokens_to_generate=10, compiled_decode_one_token=None): batch_size, seq_length = input_ids.shape input_pos = torch.arange(seq_length, device=self.device) generated_ids = torch.zeros(batch_size, seq_length + num_tokens_to_generate, dtype=torch.int, device=self.device) generated_ids[:, :seq_length] = input_ids.to(self.device).to(torch.int) logits = self.forward(input_ids, input_pos=input_pos,return_tensor=True) _next_token = torch.argmax(logits[:, -1], dim=-1)[:, None] next_token = torch.zeros(self.max_batch_size, 1, device=self.device, dtype=torch.int) next_token[:batch_size] = _next_token generated_ids[:, seq_length] = next_token[:batch_size, 0] input_pos = torch.tensor([seq_length], device=self.device) for _ in range(1, num_tokens_to_generate): if compiled_decode_one_token is not None: next_token = compiled_decode_one_token(self, next_token.clone(), input_pos) else: next_token = self.decode_one_token(next_token.clone(), input_pos) generated_ids[:, input_pos+1] = next_token.int()[:batch_size] input_pos += 1 return generated_ids def decode_one_token(self, cur_token, input_pos): logits = self.forward( cur_token, input_pos=input_pos, return_tensor=True ) new_token = torch.argmax(logits[:, -1], dim=-1)[:,None] return new_token def forward(self, idx: Tensor, input_pos: Optional[Tensor] = None, return_tensor=False) -> Tensor: assert self.freqs_cis is not None, "Caches must be initialized first" if input_pos is None: input_pos = torch.arange(idx.shape[-1], device=idx.device, dtype=torch.int) mask = self.causal_mask[None, None, input_pos] freqs_cis = self.freqs_cis[input_pos] x = self.tok_embeddings(idx) _, seqlen, _ = x.shape use_layer_cache = self.use_layer_cache and seqlen == 1 if use_layer_cache: self.layer_cache.update(x, 0) else: hiddens = [x] for i, layer in enumerate(self.layers): if self.use_gradient_checkpointing: x = checkpoint(layer, x, input_pos, freqs_cis, mask) else: x = layer(x, input_pos, freqs_cis, mask) if use_layer_cache: _hidden = self.layer_cache.update(x, i+1) # LBTD else: hiddens.append(x) _hidden = hiddens if not self.stack_hidden else hiddens if self.dynamic and self.dense: dw = self.dynamic_dense[i](x) # BTD -> CBTL dw = dw + self.dense_bs[i][:,None,None,:] # CBTL if self.stack_hidden: x = torch.einsum('LBTD, CBTL -> CBTD', _hidden, dw) else: x = self.dynamic_dense[i].layer_mix(_hidden, dw) if self.config.dense_type == 'qkvr' and self.config.dense and self.config.dynamic_dense: x = x[0] x = self.norm(x) logits = self.output(x) if return_tensor: return logits else: CausalLMOutput = namedtuple("CausalLMOutput", ["logits"]) return CausalLMOutput(logits=logits) class TransformerBlock(nn.Module): def __init__(self, config: MUDDFormerConfig, lidx) -> None: super().__init__() self.lidx = lidx self.config = config self.attention = Attention(config, lidx) self.feed_forward = FeedForward(config, lidx) self.ffn_norm = RMSNorm(config.dim, config.norm_eps) if self.config.sepln and self.lidx > 0 : self.attention_norms = torch.nn.ModuleList([RMSNorm(config.dim, config.norm_eps) for _ in range(3)]) else: self.attention_norm = RMSNorm(config.dim, config.norm_eps) def forward(self, x: Union[Tuple[Tensor], Tensor], input_pos: Tensor, freqs_cis: Tensor, mask: Tensor) -> Tensor: if self.lidx == 0 or self.config.dense_type == 'l' or not self.config.dense: res = x normed_x = self.attention_norm(x) elif self.config.dense_type == 'qkvr': res = x[-1] # for mlp if self.config.stack_hidden or not self.config.sepln: normed_x = self.attention_norm(x[:3]) else: normed_x = tuple([norm_fn(_x) for norm_fn, _x in zip(self.attention_norms, x[:3])]) attn_out = self.attention(normed_x, freqs_cis, mask, input_pos) h = res + attn_out out = h + self.feed_forward(self.ffn_norm(h)) return out class Attention(nn.Module): def __init__(self, config: MUDDFormerConfig, lidx): super().__init__() assert config.dim % config.n_head == 0 total_head_dim = (config.n_head + 2 * config.n_local_heads) * config.head_dim self.config = config if self.config.dense_type == 'l' or not self.config.dense: self.wqkv = nn.Linear(config.dim, total_head_dim, bias=False) elif self.config.dense_type == 'qkvr': self.wq = nn.Linear(config.dim, config.n_head * config.head_dim, bias=False) self.wk = nn.Linear(config.dim, config.n_local_heads * config.head_dim, bias=False) self.wv = nn.Linear(config.dim, config.n_local_heads * config.head_dim, bias=False) self.wo = nn.Linear(config.dim, config.dim, bias=False) self.lidx = lidx self.kv_cache = None self.n_head = config.n_head self.head_dim = config.head_dim self.scale_factor = 1 / math.sqrt(self.head_dim) self.n_local_heads = config.n_local_heads self.dim = config.dim self.use_qk_norm = config.use_qk_norm if self.use_qk_norm: self.q_norm = RMSNorm(self.head_dim, config.norm_eps) self.k_norm = RMSNorm(self.head_dim, config.norm_eps) self._register_load_state_dict_pre_hook(self.load_hook) def load_hook(self, state_dict, prefix, *args): if prefix + "wq.weight" in state_dict and (self.config.dense_type == 'l' or not self.config.dense): wq = state_dict.pop(prefix + "wq.weight") wk = state_dict.pop(prefix + "wk.weight") wv = state_dict.pop(prefix + "wv.weight") state_dict[prefix + "wqkv.weight"] = torch.cat([wq, wk, wv]) def forward(self, x: Union[Tuple[Tensor], Tensor], freqs_cis: Tensor, mask: Tensor, input_pos: Optional[Tensor] = None) -> Tensor: if self.lidx == 0 or self.config.dense_type == 'l' or not self.config.dense: bsz, seqlen, _ = x.shape else: if self.config.stack_hidden: C, bsz, seqlen, _ = x.shape else: C, (bsz, seqlen, _) = len(x), x[0].shape kv_size = self.n_local_heads * self.head_dim if self.config.dense_type == 'l' or not self.config.dense: q, k, v = self.wqkv(x).split([self.dim, kv_size, kv_size], dim=-1) q = q.view(bsz, seqlen, self.n_head, self.head_dim) k = k.view(bsz, seqlen, self.n_local_heads, self.head_dim) v = v.view(bsz, seqlen, self.n_local_heads, self.head_dim) elif self.config.dense_type == 'qkvr': if self.lidx == 0: xq, xk, xv = x, x, x else: xq, xk, xv = x[0], x[1], x[2] q = self.wq(xq).view(bsz, seqlen, self.n_head, self.head_dim) k = self.wk(xk).view(bsz, seqlen, self.n_local_heads, self.head_dim) v = self.wv(xv).view(bsz, seqlen, self.n_local_heads, self.head_dim) if self.use_qk_norm: q, k = self.q_norm(q), self.k_norm(k) q = apply_rotary_emb(q, freqs_cis) k = apply_rotary_emb(k, freqs_cis) q, k, v = map(lambda x: x.transpose(1, 2), (q, k, v)) if self.kv_cache is not None: if seqlen == 1: k, v = self.kv_cache.update(input_pos, k, v) else: _, _ = self.kv_cache.update(input_pos, k, v) if seqlen == 1: # one-token generation k_mask = mask[:,:,:,:self.kv_cache.seq_length] else:# prefill k_mask = mask[:,:,:,:k.shape[-2]] logits = q @ k.transpose(-2, -1) * self.scale_factor dtype = logits.dtype min_value = torch.finfo(torch.float32).min logits = logits.to(dtype=torch.float32) logits = torch.where(k_mask, logits, min_value) probs = logits.softmax(-1) probs = probs.to(dtype=dtype) y = probs @ v y = y.transpose(1, 2).contiguous().view(bsz, seqlen, self.dim) y = self.wo(y) return y class FeedForward(nn.Module): def __init__(self, config: MUDDFormerConfig, lidx, round128=True, scale_with_layer=True) -> None: super().__init__() hid_dim = config.intermediate_size if scale_with_layer: hid_dim = hid_dim * (lidx/(config.n_layer -1) +0.5) if round128: hid_dim = round(hid_dim / 128) * 128 self.w1 = nn.Linear(config.dim, hid_dim, bias=False) self.w3 = nn.Linear(config.dim, hid_dim, bias=False) self.w2 = nn.Linear(hid_dim, config.dim, bias=False) def forward(self, x: Tensor) -> Tensor: return self.w2(F.silu(self.w1(x)) * self.w3(x)) class RMSNorm(nn.Module): def __init__(self, dim: int, eps: float = 1e-5): super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(dim)) def _norm(self, x): return x * torch.rsqrt(torch.mean(x * x, dim=-1, keepdim=True) + self.eps) def forward(self, x: Tensor) -> Tensor: output = self._norm(x.float()).type_as(x) return output * self.weight class RMSnormNoscale(nn.Module): def __init__(self, epsilon=1e-6, dim=-1): super().__init__() self.dim = dim self.epsilon = epsilon def forward(self, inputs): var = inputs.pow(2).mean(dim=self.dim, keepdim=True) normed_inputs = inputs * torch.rsqrt(var + self.epsilon) return normed_inputs def precompute_freqs_cis( seq_len: int, n_elem: int, base: int = 10000 ) -> Tensor: freqs = 1.0 / (base ** (torch.arange(0, n_elem, 2)[: (n_elem // 2)].float() / n_elem)) t = torch.arange(seq_len, device=freqs.device) freqs = torch.outer(t, freqs) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1) return cache.to(dtype=torch.bfloat16) def apply_rotary_emb(x: Tensor, freqs_cis: Tensor, mode='half') -> Tensor: if mode == 'half': xshaped = x.float().reshape(*x.shape[:-1], 2,-1).transpose(-1,-2) elif mode == 'alternative': xshaped = x.float().reshape(*x.shape[:-1], -1, 2) freqs_cis = freqs_cis.view(-1, xshaped.size(1), 1, xshaped.size(3), 2) x_out2 = torch.stack( [ xshaped[..., 0] * freqs_cis[..., 0] - xshaped[..., 1] * freqs_cis[..., 1], xshaped[..., 1] * freqs_cis[..., 0] + xshaped[..., 0] * freqs_cis[..., 1], ], -1, ) x_out2 = x_out2.flatten(3) return x_out2.type_as(x) def match_weight_muddformer(model, w, strict=False): map_dict={'wq':'query', 'wk':'key', 'wv':'value', 'wo':'post', 'w1': 'ffn_layer1_gate', 'w3': 'ffn_layer1', 'w2': 'ffn_layer2', 'weight': 'w'} E, H, D = model.config.dim, model.config.n_head, model.config.head_dim N = model.config.vocab_size state_dict = {} for k, v in model.named_parameters(): if k == 'tok_embeddings.weight': v = w['state.mdl_vars.params.lm.embedding_lookup.emb_var']#[:50257,:] elif k == 'norm.weight': v = w['state.mdl_vars.params.lm.final_ln.scale'] elif k == 'output.weight': v = w['state.mdl_vars.params.lm.softmax.logits_ffn.linear.w'].T#[:50257,:] # E,N -> N,E elif 'dense_bs' in k: # static dense w lidx = int(k.split('.')[-1]) v = w[f'state.mdl_vars.params.lm.transformer.dense_conn_{lidx}'] elif 'dynamic_dense' in k: lidx = int(k.split('.')[1]) widx = int(k.split('.')[2][-1]) # 1 or 2 in w1, w2 v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.dynamic_dense_conn{widx}_{lidx}'].T else: assert 'layers' in k lidx = int(k.split('.')[1]) if '.attention.' in k: _, _, _, ptype, wtype = k.split('.') if ptype in ['wq', 'wk', 'wv', 'wo']: v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.self_attention.{map_dict.get(ptype, ptype)}.{map_dict.get(wtype, wtype)}'].reshape(E,E) if ptype != 'wo': v = v.T elif ptype in ['q_norm', 'k_norm']: v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.self_attention.{map_dict.get(ptype, ptype)}.scale'] elif 'feed_forward' in k: ptype = k.split('.')[3] # w1, w3,w2 v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.ff_layer.{map_dict[ptype]}.linear.w'].T elif 'ffn_norm' in k: # mlp layernorm v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.ff_layer.layer_norm.scale'] elif 'attention_norm' in k: # attention layernorm if 'attention_norms' in k: ln_idx = int(k.split('.')[3]) v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.layer_norms_{ln_idx}.scale'] else: v = w[f'state.mdl_vars.params.lm.transformer.x_layers_{lidx}.layer_norm.scale'] state_dict[k] = torch.tensor(v) model.load_state_dict(state_dict, strict=strict) return model