import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class MixinConfig(PretrainedConfig): def __init__( self, mixin_every_n_layers=4, language_dim=4096, vision_dim=4096, head_dim=128, num_heads=16, intermediate_size=16384, **kwargs, ): super().__init__(**kwargs) self.mixin_every_n_layers = mixin_every_n_layers self.language_dim=language_dim self.vision_dim=vision_dim self.head_dim=head_dim self.num_heads=num_heads self.intermediate_size=intermediate_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> 'PretrainedConfig': config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs) if 'mixin_config' in config_dict: config_dict = config_dict['mixin_config'] if 'model_type' in config_dict and hasattr(cls, 'model_type') and config_dict['model_type'] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(config_dict, **kwargs)