--- base_model: - OpenGVLab/InternViT-300M-448px - internlm/internlm2-chat-7b language: - multilingual library_name: transformers license: mit pipeline_tag: image-text-to-text tags: - internvl - custom_code base_model_relation: merge --- # CoMemo-9B [\[📂 GitHub\]](https://github.com/LALBJ/CoMemo) [\[📜 Paper\]](https://arxiv.org/pdf/2506.06279) [\[🌐 Project Page\]](https://lalbj.github.io/projects/CoMemo/) [\[🚀 Quick Start\]](#quick-start) ## Introduction LVLMs inherited LLMs architectural designs, which introduce suboptimal characteristics for multimodal processing. First, LVLMs exhibit a bimodal distribution in attention allocation, leading to the progressive neglect of central visual content as context expands. Second, conventional positional encoding schemes fail to preserve vital 2D structural relationships when processing dynamic high-resolution images. To address these issues, we propose CoMemo, a novel model architecture. CoMemo employs a dual-path approach for visual processing: one path maps image tokens to the text token representation space for causal self-attention, while the other introduces cross-attention, enabling context-agnostic computation between the input sequence and image information. Additionally, we developed RoPE-DHR, a new positional encoding method tailored for LVLMs with dynamic high-resolution inputs. RoPE-DHR mitigates the remote decay problem caused by dynamic high-resolution inputs while preserving the 2D structural information of images. Evaluated on seven diverse tasks, including long-context understanding, multi-image reasoning, and visual question answering, CoMemo achieves relative improvements of 17.2%, 7.0%, and 5.6% on Caption, Long-Generation, and Long-Context tasks, respectively, with consistent performance gains across various benchmarks. For more details, please refer to our [paper](https://arxiv.org/pdf/2506.06279) and [GitHub](https://github.com/LALBJ/CoMemo). | Model Name | Vision Part | Language Part | HF Link | | :------------------: | :---------------------------------------------------------------------------------: | :------------------------------------------------------------------------------------------: | :--------------------------------------------------------------: | | CoMemo-2B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-1_8b](https://huggingface.co/internlm/internlm2-chat-1_8b) | [🤗 link](https://huggingface.co/CLLBJ16/CoMemo-2B) | | CoMemo-9B | [InternViT-300M-448px](https://huggingface.co/OpenGVLab/InternViT-300M-448px) | [internlm2-chat-7b](https://huggingface.co/internlm/internlm2-chat-7b) | [🤗 link](https://huggingface.co/CLLBJ16/CoMemo-9B) | ## Method Overview
teaser teaser
**Left:** The computation process of Rope-DHR. The colors are assigned based on a mapping of position IDs in RoPE. **Right:** Framework of CoMemo. Both paths share the same encoder and projector ## Quick Start We provide an example code to run `CoMemo-9B` using `transformers`. > Please use transformers>=4.37.2 to ensure the model works normally. ### Inference with Transformers > Note: We determine whether to use RoPE-DHR by checking if the target_aspect_ratio parameter is passed to generate. > For OCR-related tasks requiring fine-grained image information, we recommend using the original RoPE. For long-context tasks, we recommend using RoPE-DHR. ```python import torch from PIL import Image import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer path = "CLLBJ16/CoMemo-9B" model = AutoModel.from_pretrained( path, torch_dtype=torch.bfloat16, trust_remote_code=True, low_cpu_mem_usage=True).eval().cuda() tokenizer = AutoTokenizer.from_pretrained(path, trust_remote_code=True, use_fast=False) IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) def build_transform(input_size): MEAN, STD = IMAGENET_MEAN, IMAGENET_STD transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=MEAN, std=STD) ]) return transform def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # calculate the existing image aspect ratio target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # find the closest aspect ratio to the target target_aspect_ratio = find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size) # calculate the target width and height target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # resize the image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) # split the image split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images, target_aspect_ratio def load_image(image_file, input_size=448, max_num=12): image = Image.open(image_file).convert('RGB') transform = build_transform(input_size=input_size) images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values, target_aspect_ratio pixel_values, target_aspect_ratio = load_image('./assets/image1.jpg', max_num=12) pixel_values = pixel_values.to(torch.bfloat16).cuda() generation_config = dict(max_new_tokens=1024, do_sample=True) # single-image single-round conversation (单图单轮对话) question = ' Please describe the image shortly.' target_aspect_ratio = [target_aspect_ratio] # Use RoPE-DHR response = model.chat(tokenizer, pixel_values, question, generation_config, target_aspect_ratio=target_aspect_ratio) # # Use Original Rope # response = model.chat(tokenizer, pixel_values, question, generation_config, target_aspect_ratio=target_aspect_ratio) print(f'User: {question} Assistant: {response}') # multi-image single-round conversation, separate images (多图多轮对话,独立图像) pixel_values1, target_aspect_ratio1 = load_image('./assets/image1.jpg', max_num=12) pixel_values1 = pixel_values1.to(torch.bfloat16).cuda() pixel_values2, target_aspect_ratio2 = load_image('./assets/image2.jpg', max_num=12) pixel_values2 = pixel_values2.to(torch.bfloat16).cuda() pixel_values = torch.cat((pixel_values1, pixel_values2), dim=0) target_aspect_ratio = [target_aspect_ratio1, target_aspect_ratio2] num_patches_list = [pixel_values1.size(0), pixel_values2.size(0)] question = 'Image-1: Image-2: What are the similarities and differences between these two images.' # Use RoPE-DHR response = model.chat(tokenizer, pixel_values, question, generation_config, num_patches_list=num_patches_list, target_aspect_ratio=target_aspect_ratio) # # Use Original RoPE # response = model.chat(tokenizer, pixel_values, question, generation_config, # num_patches_list=num_patches_list, target_aspect_ratio=target_aspect_ratio) print(f'User: {question} Assistant: {response}') ``` ## License This project is released under the MIT license. Parts of this project contain code and models from other sources, which are subject to their respective licenses. ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{liu2025comemo, title={CoMemo: LVLMs Need Image Context with Image Memory}, author={Liu, Shi and Su, Weijie and Zhu, Xizhou and Wang, Wenhai and Dai, Jifeng}, journal={arXiv preprint arXiv:2506.06279}, year={2025} } ```