import os import random import warnings from typing import Any, List, Optional, Tuple, Union from einops import rearrange,repeat import torch.distributed as dist import torch.utils.checkpoint import transformers from torch import nn from torch.nn import CrossEntropyLoss from transformers import GenerationConfig, LlamaForCausalLM from transformers.modeling_outputs import CausalLMOutputWithPast from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from .conversation import get_conv_template from .modeling_internlm2 import InternLM2ForCausalLM from .configuration_comemo_chat import CoMemoChatConfig from .modeling_intern_vit import InternVisionModel from .mixin_lm import LMMixin from .utils import _infer_decoder_layers_attr_name, extend_instance from .helpers import * import numpy as np logger = logging.get_logger(__name__) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) ORIGINAL_SIZE = 16 THUMBNAIL_TOKEN_LENGTH = 256 def calculate_subimage_indices(X, Y, position_bias): """ Calculate the index mapping for X×Y sub-images, which maps tokens from a 16×16 sub-image into the thumbnail. Args: X (int): The number of columns the subimage is divided into. Y (int): The number of rows the subimage is divided into. position_bias (int): Offset added to the indices. Returns: list: A list containing indices for all subimage tokens combined with thumbnail image indices. """ if X <= 0 or Y <= 0: raise ValueError("X and Y must be positive integers.") result = [] subimage_width = ORIGINAL_SIZE / X - 1e-6 subimage_height = ORIGINAL_SIZE / Y - 1e-6 if X > 1 or Y > 1: # Use RoPE-DHR for i in range(X): for j in range(Y): # The indices of the top-left and bottom-right corners of the current subimage. start_x = i * subimage_width end_x = (i + 1) * subimage_width start_y = j * subimage_height end_y = (j + 1) * subimage_height # Generate the index list for the current subimage. indices = [ (int(row) * ORIGINAL_SIZE + int(col) + position_bias) for row in np.linspace(start_y, end_y, ORIGINAL_SIZE) for col in np.linspace(start_x, end_x, ORIGINAL_SIZE) ] result.extend(indices) thumnail_position_ids = (np.arange(0, THUMBNAIL_TOKEN_LENGTH) + position_bias).tolist() result.extend(thumnail_position_ids) return result class CoMemoChatModel(PreTrainedModel): config_class = CoMemoChatConfig main_input_name = 'pixel_values' _no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'InternLM2DecoderLayer'] def __init__(self, config: CoMemoChatConfig, vision_model=None, language_model=None, delay_init_new_param=False): super().__init__(config) assert version_cmp(transformers.__version__, '4.37.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.ps_version = config.ps_version logger.info(f'num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: if config.use_temporal: self.vision_model = InternVisionTemporalModel(config.vision_config, delay_init_new_param=delay_init_new_param) else: self.vision_model = InternVisionModel(config.vision_config) if language_model is not None: self.language_model = language_model else: if config.llm_config.architectures[0] == 'LlamaForCausalLM': self.language_model = LlamaForCausalLM(config.llm_config) elif config.llm_config.architectures[0] == 'InternLM2ForCausalLM': self.language_model = InternLM2ForCausalLM(config.llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.img_context_token_id = None self.conv_template = get_conv_template(self.template) self.system_message = self.conv_template.system_message self.num_samples = 0 ## Init Mixin Layers self.mixin_every_n_layers = config.mixin_config.mixin_every_n_layers extend_instance(self.language_model, LMMixin) decoder_layers_attr_name = _infer_decoder_layers_attr_name(self.language_model) self.language_model.set_decoder_layers_attr_name(decoder_layers_attr_name) self.language_model.init_mixin( config=config.mixin_config, gradient_checkpointing=True, ) def _condition_attn_mask_and_pos_ids(self, attn_mask, cross_attn_media_position_ids, cross_attn_text_position_ids, text_time, cu_seqlens_q=None, cu_seqlens_k=None): for layer in self.language_model._get_decoder_layers(): if layer.gated_cross_attn_layer is not None: layer.gated_cross_attn_layer.cross_attn.media_attn_mask = attn_mask layer.gated_cross_attn_layer.cross_attn_media_position_ids = cross_attn_media_position_ids layer.gated_cross_attn_layer.cross_attn_text_position_ids = cross_attn_text_position_ids layer.gated_cross_attn_layer.text_time = text_time layer.gated_cross_attn_layer.cross_attn.cu_seqlens_q = cu_seqlens_q layer.gated_cross_attn_layer.cross_attn.cu_seqlens_k = cu_seqlens_k def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, seq_imgs: Optional[torch.LongTensor] = None, cross_attention_media_position_ids: Optional[torch.LongTensor] = None, text_time: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: assert ( self.language_model.initialized_mixin ), "Mixin layers are not initialized. Please call `init_mixin` first." assert ( self.language_model._use_cached_vision_x or pixel_values is not None ), "Must provide either vision_x or have precached media using cache_media()." # During the training process, the forward method is called. # Since training only performs a single-step inference at a time, there is no need to use cached media. for layer in self.language_model._get_decoder_layers(): layer.condition_use_cached_media(False) return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() vit_embeds = self.extract_feature(pixel_values) vit_batch_size = pixel_values.shape[0] vision_x = vit_embeds.unsqueeze(0) _, patch_n, patch_token_n, _ = vision_x.shape vision_x = rearrange(vision_x, "b t n d -> b (t n) d") if self.language_model._use_cached_vision_x: # Case: use cached; vision_x should be cached and other # vision-related inputs should not be provided. assert ( pixel_values is None ), "Expect vision_x to be None when media has been cached using cache_media(). Try uncache_media() first." assert self.language_model.is_conditioned() else: for i, layer in enumerate(self.language_model._get_decoder_layers()): if (i+1) % self.mixin_every_n_layers == 0: layer.condition_vis_x(vision_x) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0: print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}') input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) vit_embeds = vit_embeds[image_flags == 1] try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}') n_token = selected.sum() input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] input_embeds = input_embeds.reshape(B, N, C) ## To support the Training Data Packing strategy in cross attention ## Note: Currently, only flash attention and torch.SDPA implementations are supported. ## Example: ## 1 1 1 0 0 0 ## 1 1 1 0 0 0 ## 1 1 1 0 0 0 ## 0 0 0 1 1 1 ## 0 0 0 1 1 1 ## 0 0 0 1 1 1 if config.llm_config.attn_implementation == 'flash_attention_2': cu_seqlens_q = attention_mask cu_seqlens_k = torch.cat((torch.tensor([[0]], device=seq_imgs.device, dtype=seq_imgs.dtype), (seq_imgs * patch_token_n).cumsum(dim=-1)), dim=-1).to(attention_mask.dtype) else: seq_cnt = seq_imgs[0].size(0) seq_to_media_mask_1d = torch.zeros((seq_cnt, patch_n * patch_token_n)) cum_sum = 0 for i in range(seq_cnt): current_lens = seq_imgs[0, i].item() * patch_token_n seq_to_media_mask_1d[i, cum_sum: cum_sum + current_lens] = 1 cum_sum += current_lens seq_to_media_mask = torch.cat([repeat(cu, 'i -> b i', b=(attention_mask[0,i+1] - attention_mask[0,i])) for i, cu in enumerate(seq_to_media_mask_1d)], dim=0) seq_to_media_mask = seq_to_media_mask.to(input_ids.device).unsqueeze(0).unsqueeze(0) media_attn_mask = seq_to_media_mask.bool() if not self.language_model._use_cached_vision_x: self._condition_attn_mask_and_pos_ids(media_attn_mask, cross_attention_media_position_ids, position_ids, text_time, cu_seqlens_q, cu_seqlens_k) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) logits = outputs.logits loss = None if labels is not None: # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def pixel_shuffle(self, x, scale_factor=0.5): n, w, h, c = x.size() # N, W, H, C --> N, W, H * scale, C // scale x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) # N, W, H * scale, C // scale --> N, H * scale, W, C // scale x = x.permute(0, 2, 1, 3).contiguous() # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2) x = x.view(n, int(h * scale_factor), int(w * scale_factor), int(c / (scale_factor * scale_factor))) if self.ps_version == 'v1': warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " 'which results in a transposed image.') else: x = x.permute(0, 2, 1, 3).contiguous() return x def extract_feature(self, pixel_values): kwargs = {} if self.select_layer == -1: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True, **kwargs ).last_hidden_state else: vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=True, return_dict=True, **kwargs ).hidden_states[self.select_layer] vit_embeds = vit_embeds[:, 1:, :] h = w = int(vit_embeds.shape[1] ** 0.5) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) vit_embeds = self.mlp1(vit_embeds) return vit_embeds def chat(self, tokenizer, pixel_values, question, generation_config, target_aspect_ratio=None, history=None, return_history=False, num_patches_list=None, IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', IMAGE_START_TOKEN_ID = 92544, IMAGE_END_TOKEN_ID = 92545, verbose=False): if history is None and pixel_values is not None and '' not in question: question = '\n' + question if num_patches_list is None: num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id position_ids=None cross_attention_media_position_ids=None position_bias = torch.where(input_ids[0] == IMAGE_START_TOKEN_ID)[0] + 1 img_start_idx = torch.where(input_ids[0] == IMAGE_START_TOKEN_ID)[0].tolist() img_end_idx = torch.where(input_ids[0] == IMAGE_END_TOKEN_ID)[0] if target_aspect_ratio is not None: # Use RoPE-DHR position_ids = torch.tensor([]) seq_lens = input_ids[0].shape[0] cross_attention_media_position_ids = [] cum_tile_lens = 0 for i in range(len(position_bias)): cur_position_bias = position_bias[i].item() cur_aspect_ratio = target_aspect_ratio[i] cur_cross_attention_media_position_ids = calculate_subimage_indices(cur_aspect_ratio[0], cur_aspect_ratio[1], (cur_position_bias - cum_tile_lens)) cross_attention_media_position_ids.extend(cur_cross_attention_media_position_ids) if i == 0: position_ids = torch.concat((torch.arange(cur_position_bias), torch.tensor(cur_cross_attention_media_position_ids))) else: position_ids = torch.concat((position_ids, torch.arange(img_end_idx[i-1], cur_position_bias) - cum_tile_lens, torch.tensor(cur_cross_attention_media_position_ids))) cum_tile_lens += THUMBNAIL_TOKEN_LENGTH * (num_patches_list[i] - 1) position_ids = torch.concat((position_ids, torch.arange(img_end_idx[-1], seq_lens) - cum_tile_lens)).unsqueeze(0) cross_attention_media_position_ids = torch.tensor(cross_attention_media_position_ids).unsqueeze(0) else: # Use Original RoPE position_ids = torch.arange( input_ids.shape[1] ) cross_attention_media_position_ids = [] for i in range(len(img_start_idx)): cross_attention_media_position_ids.append(position_ids[img_start_idx[i]+1:img_end_idx[i]]) cross_attention_media_position_ids = torch.cat(cross_attention_media_position_ids, dim=0).unsqueeze(0) position_ids = position_ids.unsqueeze(0) generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, num_patches_list=num_patches_list, cross_attention_media_position_ids=cross_attention_media_position_ids, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep)[0].strip() history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, num_patches_list: Optional[torch.LongTensor] = None, position_ids: Optional[torch.FloatTensor] = None, cross_attention_media_position_ids: Optional[torch.FloatTensor] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None for layer in self.language_model._get_decoder_layers(): layer.condition_use_cached_media(True) if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds = self.extract_feature(pixel_values) self.language_model._use_cached_vision_x = True vision_x = rearrange(vit_embeds, "t n d -> (t n) d").unsqueeze(0) for i, layer in enumerate(self.language_model._get_decoder_layers()): if (i+1) % self.mixin_every_n_layers == 0: layer.condition_vis_x(vision_x) input_embeds = self.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape input_embeds = input_embeds.reshape(B * N, C) input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) self._condition_attn_mask_and_pos_ids(None, cross_attention_media_position_ids, position_ids, None) kwargs = {} kwargs['position_ids'] = position_ids outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, return_dict=return_dict, use_cache=True, **generate_kwargs, **kwargs, ) self.language_model.clear_conditioned_layers() self.language_model._use_cached_vision_x = False for layer in self.language_model._get_decoder_layers(): layer.condition_use_cached_media(False) return outputs