|
python run_speech_recognition_ctc.py \ |
|
--model_name_or_path="facebook/w2v-bert-2.0" \ |
|
--dataset_name="CLEAR-Global/luo_19h" \ |
|
--train_split_name="train" \ |
|
--eval_split_name="validation" \ |
|
--output_dir="./w2v-bert-2.0-luo_cv_fleurs_19h" \ |
|
--max_steps="100000" \ |
|
--per_device_train_batch_size="32" \ |
|
--per_device_eval_batch_size="32" \ |
|
--gradient_accumulation_steps="2" \ |
|
--freeze_feature_encoder=false \ |
|
--add_adapter=true \ |
|
--mask_time_prob="0.0" \ |
|
--final_dropout="0.1" \ |
|
--attention_dropout="0.05" \ |
|
--feat_proj_dropout="0.05" \ |
|
--hidden_dropout="0.05" \ |
|
--ctc_zero_infinity=true \ |
|
--learning_rate="3e-5" \ |
|
--warmup_ratio="0.1" \ |
|
--eval_strategy="steps" \ |
|
--save_steps="1000" \ |
|
--eval_steps="1000" \ |
|
--logging_steps="1" \ |
|
--eval_metrics wer cer \ |
|
--save_total_limit="1" \ |
|
--load_best_model_at_end \ |
|
--max_duration_in_seconds="30" \ |
|
--gradient_checkpointing \ |
|
--fp16 \ |
|
--group_by_length \ |
|
--length_column_name "input_length" \ |
|
--do_train --do_eval \ |
|
--preprocessing_num_workers="22" \ |
|
--dataloader_num_workers="22" \ |
|
--push_to_hub \ |
|
--push_to_hub_organization="CLEAR-Global" \ |
|
--hub_strategy="checkpoint" |
|
|