--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/luo_19_77h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-luo_19_77h results: [] --- # w2v-bert-2.0-luo_19_77h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/LUO_19_77H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2419 - Wer: 0.2906 - Cer: 0.0898 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 0.469 | 0.8446 | 1000 | 0.8816 | 0.6085 | 0.1993 | | 0.1171 | 1.6892 | 2000 | 0.6389 | 0.4184 | 0.1531 | | 0.0837 | 2.5338 | 3000 | 0.5226 | 0.3805 | 0.1395 | | 0.1017 | 3.3784 | 4000 | 0.3857 | 0.3532 | 0.1133 | | 0.036 | 4.2230 | 5000 | 0.3766 | 0.3457 | 0.1161 | | 0.0509 | 5.0676 | 6000 | 0.3433 | 0.3408 | 0.1149 | | 0.0444 | 5.9122 | 7000 | 0.2983 | 0.3082 | 0.0981 | | 0.0704 | 6.7568 | 8000 | 0.2803 | 0.2972 | 0.0968 | | 0.0516 | 7.6014 | 9000 | 0.3242 | 0.2932 | 0.1006 | | 0.0362 | 8.4459 | 10000 | 0.2760 | 0.3047 | 0.0967 | | 0.0253 | 9.2905 | 11000 | 0.2727 | 0.2782 | 0.0908 | | 0.026 | 10.1351 | 12000 | 0.2789 | 0.2959 | 0.1049 | | 0.0274 | 10.9797 | 13000 | 0.2542 | 0.2782 | 0.0922 | | 0.0218 | 11.8243 | 14000 | 0.2694 | 0.2646 | 0.0904 | | 0.0201 | 12.6689 | 15000 | 0.2575 | 0.3007 | 0.0922 | | 0.0201 | 13.5135 | 16000 | 0.2419 | 0.2901 | 0.0896 | | 0.0216 | 14.3581 | 17000 | 0.2478 | 0.2795 | 0.0933 | | 0.0079 | 15.2027 | 18000 | 0.2974 | 0.2844 | 0.0890 | | 0.0352 | 16.0473 | 19000 | 0.2596 | 0.2959 | 0.0930 | | 0.0302 | 16.8919 | 20000 | 0.2831 | 0.2491 | 0.0849 | | 0.0115 | 17.7365 | 21000 | 0.2966 | 0.2751 | 0.0920 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1