File size: 3,161 Bytes
bb9aa81 5df9298 bb9aa81 5df9298 bb9aa81 5df9298 bb9aa81 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- automatic-speech-recognition
- CLEAR-Global/luo_19_77h
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-luo_19_77h
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v-bert-2.0-luo_19_77h
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/LUO_19_77H - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2419
- Wer: 0.2906
- Cer: 0.0898
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 0.469 | 0.8446 | 1000 | 0.8816 | 0.6085 | 0.1993 |
| 0.1171 | 1.6892 | 2000 | 0.6389 | 0.4184 | 0.1531 |
| 0.0837 | 2.5338 | 3000 | 0.5226 | 0.3805 | 0.1395 |
| 0.1017 | 3.3784 | 4000 | 0.3857 | 0.3532 | 0.1133 |
| 0.036 | 4.2230 | 5000 | 0.3766 | 0.3457 | 0.1161 |
| 0.0509 | 5.0676 | 6000 | 0.3433 | 0.3408 | 0.1149 |
| 0.0444 | 5.9122 | 7000 | 0.2983 | 0.3082 | 0.0981 |
| 0.0704 | 6.7568 | 8000 | 0.2803 | 0.2972 | 0.0968 |
| 0.0516 | 7.6014 | 9000 | 0.3242 | 0.2932 | 0.1006 |
| 0.0362 | 8.4459 | 10000 | 0.2760 | 0.3047 | 0.0967 |
| 0.0253 | 9.2905 | 11000 | 0.2727 | 0.2782 | 0.0908 |
| 0.026 | 10.1351 | 12000 | 0.2789 | 0.2959 | 0.1049 |
| 0.0274 | 10.9797 | 13000 | 0.2542 | 0.2782 | 0.0922 |
| 0.0218 | 11.8243 | 14000 | 0.2694 | 0.2646 | 0.0904 |
| 0.0201 | 12.6689 | 15000 | 0.2575 | 0.3007 | 0.0922 |
| 0.0201 | 13.5135 | 16000 | 0.2419 | 0.2901 | 0.0896 |
| 0.0216 | 14.3581 | 17000 | 0.2478 | 0.2795 | 0.0933 |
| 0.0079 | 15.2027 | 18000 | 0.2974 | 0.2844 | 0.0890 |
| 0.0352 | 16.0473 | 19000 | 0.2596 | 0.2959 | 0.0930 |
| 0.0302 | 16.8919 | 20000 | 0.2831 | 0.2491 | 0.0849 |
| 0.0115 | 17.7365 | 21000 | 0.2966 | 0.2751 | 0.0920 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
|