--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/naijavoices_500h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-hausa_naijavoices_500h results: [] --- # w2v-bert-2.0-hausa_naijavoices_500h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/NAIJAVOICES_500H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2268 - Wer: 0.3250 - Cer: 0.1875 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 160 - eval_batch_size: 160 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 320 - total_eval_batch_size: 320 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 50.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 0.7206 | 0.5587 | 1000 | 0.4335 | 0.4167 | 0.2119 | | 0.2797 | 1.1173 | 2000 | 0.3227 | 0.3731 | 0.1999 | | 0.2159 | 1.6760 | 3000 | 0.2890 | 0.3517 | 0.1951 | | 0.2734 | 2.2346 | 4000 | 0.2733 | 0.3458 | 0.1932 | | 0.1894 | 2.7933 | 5000 | 0.2602 | 0.3431 | 0.1917 | | 0.2076 | 3.3520 | 6000 | 0.2577 | 0.3413 | 0.1918 | | 0.2168 | 3.9106 | 7000 | 0.2481 | 0.3386 | 0.1911 | | 0.1709 | 4.4693 | 8000 | 0.2492 | 0.3407 | 0.1913 | | 0.3026 | 5.0279 | 9000 | 0.2520 | 0.3386 | 0.1914 | | 0.2794 | 5.5866 | 10000 | 0.2597 | 0.3395 | 0.1910 | | 0.1957 | 6.1453 | 11000 | 0.2412 | 0.3370 | 0.1903 | | 0.1605 | 6.7039 | 12000 | 0.2393 | 0.3319 | 0.1893 | | 0.1902 | 7.2626 | 13000 | 0.2426 | 0.3335 | 0.1896 | | 0.1637 | 7.8212 | 14000 | 0.2348 | 0.3319 | 0.1888 | | 0.1693 | 8.3799 | 15000 | 0.2320 | 0.3289 | 0.1885 | | 0.1584 | 8.9385 | 16000 | 0.2341 | 0.3298 | 0.1885 | | 0.1671 | 9.4972 | 17000 | 0.2274 | 0.3253 | 0.1876 | | 0.244 | 10.0559 | 18000 | 0.2337 | 0.3305 | 0.1885 | | 0.2167 | 10.6145 | 19000 | 0.2335 | 0.3264 | 0.1877 | | 0.165 | 11.1732 | 20000 | 0.2276 | 0.3269 | 0.1875 | | 0.1679 | 11.7318 | 21000 | 0.2303 | 0.3322 | 0.1886 | | 0.1746 | 12.2905 | 22000 | 0.2277 | 0.3247 | 0.1867 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu126 - Datasets 3.5.0 - Tokenizers 0.21.1