File size: 2,806 Bytes
b41b65f
 
 
 
 
6f5e716
 
b41b65f
 
 
 
 
 
 
 
 
 
 
 
 
6f5e716
b41b65f
6f5e716
 
 
b41b65f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
library_name: transformers
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- automatic-speech-recognition
- CLEAR-Global/naijavoices_100h
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v-bert-2.0-hausa_naijavoices_100h
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# w2v-bert-2.0-hausa_naijavoices_100h

This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/NAIJAVOICES_100H - NA dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2644
- Wer: 0.3398
- Cer: 0.1916

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 160
- eval_batch_size: 160
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 320
- total_eval_batch_size: 320
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 250.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
| 0.346         | 2.7933  | 1000  | 0.4367          | 0.4197 | 0.2131 |
| 0.2972        | 5.5866  | 2000  | 0.3150          | 0.3691 | 0.1998 |
| 0.2638        | 8.3799  | 3000  | 0.2892          | 0.3556 | 0.1959 |
| 0.2308        | 11.1732 | 4000  | 0.2728          | 0.3471 | 0.1938 |
| 0.2338        | 13.9665 | 5000  | 0.2707          | 0.3430 | 0.1929 |
| 0.2105        | 16.7598 | 6000  | 0.2687          | 0.3389 | 0.1917 |
| 0.1732        | 19.5531 | 7000  | 0.2710          | 0.3437 | 0.1935 |
| 0.1638        | 22.3464 | 8000  | 0.2657          | 0.3426 | 0.1927 |
| 0.1933        | 25.1397 | 9000  | 0.2787          | 0.3413 | 0.1918 |
| 0.144         | 27.9330 | 10000 | 0.2651          | 0.3397 | 0.1916 |
| 0.1493        | 30.7263 | 11000 | 0.2757          | 0.3415 | 0.1923 |
| 0.1267        | 33.5196 | 12000 | 0.2826          | 0.3482 | 0.1924 |
| 0.1045        | 36.3128 | 13000 | 0.3057          | 0.3480 | 0.1930 |
| 0.066         | 39.1061 | 14000 | 0.3314          | 0.3526 | 0.1942 |
| 0.0564        | 41.8994 | 15000 | 0.3840          | 0.3541 | 0.1939 |


### Framework versions

- Transformers 4.48.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1