W0428 14:15:30.340000 10638 torch/distributed/run.py:766] W0428 14:15:30.340000 10638 torch/distributed/run.py:766] ***************************************** W0428 14:15:30.340000 10638 torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. W0428 14:15:30.340000 10638 torch/distributed/run.py:766] ***************************************** /root/workdir/.venv/lib/python3.12/site-packages/transformers/training_args.py:2085: FutureWarning: `--push_to_hub_organization` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_model_id` instead and pass the full repo name to this argument (in this case CLEAR-Global/w2v-bert-2.0-hausa_579_450h). warnings.warn( 04/28/2025 14:15:34 - WARNING - __main__ - Process rank: 0, device: cuda:0, n_gpu: 1, distributed training: True, 16-bits training: True 04/28/2025 14:15:34 - INFO - __main__ - Training/evaluation parameters TrainingArguments( _n_gpu=1, accelerator_config={'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None, 'use_configured_state': False}, adafactor=False, adam_beta1=0.9, adam_beta2=0.999, adam_epsilon=1e-08, auto_find_batch_size=False, average_tokens_across_devices=False, batch_eval_metrics=False, bf16=False, bf16_full_eval=False, data_seed=None, dataloader_drop_last=False, dataloader_num_workers=44, dataloader_persistent_workers=False, dataloader_pin_memory=True, dataloader_prefetch_factor=None, ddp_backend=None, ddp_broadcast_buffers=None, ddp_bucket_cap_mb=None, ddp_find_unused_parameters=None, ddp_timeout=1800, debug=[], deepspeed=None, disable_tqdm=False, dispatch_batches=None, do_eval=True, do_predict=False, do_train=True, eval_accumulation_steps=None, eval_delay=0, eval_do_concat_batches=True, eval_on_start=False, eval_steps=1000, eval_strategy=IntervalStrategy.STEPS, eval_use_gather_object=False, evaluation_strategy=None, fp16=True, fp16_backend=auto, fp16_full_eval=False, fp16_opt_level=O1, fsdp=[], fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, fsdp_min_num_params=0, fsdp_transformer_layer_cls_to_wrap=None, full_determinism=False, gradient_accumulation_steps=1, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, greater_is_better=False, group_by_length=True, half_precision_backend=auto, hub_always_push=False, hub_model_id=CLEAR-Global/w2v-bert-2.0-hausa_579_450h, hub_private_repo=None, hub_strategy=HubStrategy.CHECKPOINT, hub_token=, ignore_data_skip=False, include_for_metrics=[], include_inputs_for_metrics=False, include_num_input_tokens_seen=False, include_tokens_per_second=False, jit_mode_eval=False, label_names=None, label_smoothing_factor=0.0, learning_rate=3e-05, length_column_name=input_length, load_best_model_at_end=True, local_rank=0, log_level=passive, log_level_replica=warning, log_on_each_node=True, logging_dir=./w2v-bert-2.0-hausa_579_450h/runs/Apr28_14-15-34_synvoices-hausa-1tb, logging_first_step=False, logging_nan_inf_filter=True, logging_steps=1.0, logging_strategy=IntervalStrategy.STEPS, lr_scheduler_kwargs={}, lr_scheduler_type=SchedulerType.LINEAR, max_grad_norm=1.0, max_steps=-1, metric_for_best_model=loss, mp_parameters=, neftune_noise_alpha=None, no_cuda=False, num_train_epochs=24.0, optim=OptimizerNames.ADAMW_TORCH, optim_args=None, optim_target_modules=None, output_dir=./w2v-bert-2.0-hausa_579_450h, overwrite_output_dir=False, past_index=-1, per_device_eval_batch_size=160, per_device_train_batch_size=160, prediction_loss_only=False, push_to_hub=True, push_to_hub_model_id=None, push_to_hub_organization=CLEAR-Global, push_to_hub_token=, ray_scope=last, remove_unused_columns=True, report_to=['tensorboard'], restore_callback_states_from_checkpoint=False, resume_from_checkpoint=None, run_name=./w2v-bert-2.0-hausa_579_450h, save_on_each_node=False, save_only_model=False, save_safetensors=True, save_steps=1000, save_strategy=SaveStrategy.STEPS, save_total_limit=1, seed=42, skip_memory_metrics=True, split_batches=None, tf32=None, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, torch_empty_cache_steps=None, torchdynamo=None, tpu_metrics_debug=False, tpu_num_cores=None, use_cpu=False, use_ipex=False, use_legacy_prediction_loop=False, use_liger_kernel=False, use_mps_device=False, warmup_ratio=0.1, warmup_steps=0, weight_decay=0.0, ) /root/workdir/.venv/lib/python3.12/site-packages/transformers/training_args.py:2085: FutureWarning: `--push_to_hub_organization` is deprecated and will be removed in version 5 of 🤗 Transformers. Use `--hub_model_id` instead and pass the full repo name to this argument (in this case CLEAR-Global/w2v-bert-2.0-hausa_579_450h). warnings.warn( 04/28/2025 14:15:34 - WARNING - __main__ - Process rank: 1, device: cuda:1, n_gpu: 1, distributed training: True, 16-bits training: True [rank1]:[W428 14:15:55.498977009 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. [rank0]:[W428 14:15:55.525914070 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device. loading configuration file config.json from cache at /root/.cache/huggingface/hub/models--facebook--w2v-bert-2.0/snapshots/da985ba0987f70aaeb84a80f2851cfac8c697a7b/config.json Model config Wav2Vec2BertConfig { "_name_or_path": "facebook/w2v-bert-2.0", "activation_dropout": 0.0, "adapter_act": "relu", "adapter_kernel_size": 3, "adapter_stride": 2, "add_adapter": false, "apply_spec_augment": false, "architectures": [ "Wav2Vec2BertModel" ], "attention_dropout": 0.0, "bos_token_id": 1, "classifier_proj_size": 768, "codevector_dim": 768, "conformer_conv_dropout": 0.1, "contrastive_logits_temperature": 0.1, "conv_depthwise_kernel_size": 31, "ctc_loss_reduction": "sum", "ctc_zero_infinity": false, "diversity_loss_weight": 0.1, "eos_token_id": 2, "feat_proj_dropout": 0.0, "feat_quantizer_dropout": 0.0, "feature_projection_input_dim": 160, "final_dropout": 0.1, "hidden_act": "swish", "hidden_dropout": 0.0, "hidden_size": 1024, "initializer_range": 0.02, "intermediate_size": 4096, "layer_norm_eps": 1e-05, "layerdrop": 0.1, "left_max_position_embeddings": 64, "mask_feature_length": 10, "mask_feature_min_masks": 0, "mask_feature_prob": 0.0, "mask_time_length": 10, "mask_time_min_masks": 2, "mask_time_prob": 0.05, "max_source_positions": 5000, "model_type": "wav2vec2-bert", "num_adapter_layers": 1, "num_attention_heads": 16, "num_codevector_groups": 2, "num_codevectors_per_group": 320, "num_hidden_layers": 24, "num_negatives": 100, "output_hidden_size": 1024, "pad_token_id": 0, "position_embeddings_type": "relative_key", "proj_codevector_dim": 768, "right_max_position_embeddings": 8, "rotary_embedding_base": 10000, "tdnn_dilation": [ 1, 2, 3, 1, 1 ], "tdnn_dim": [ 512, 512, 512, 512, 1500 ], "tdnn_kernel": [ 5, 3, 3, 1, 1 ], "torch_dtype": "float32", "transformers_version": "4.48.1", "use_intermediate_ffn_before_adapter": false, "use_weighted_layer_sum": false, "vocab_size": null, "xvector_output_dim": 512 } Map: 0%| | 0/1046515 [00:00', 'eos_token': '', 'unk_token': '[UNK]', 'pad_token': '[PAD]'}, clean_up_tokenization_spaces=False, added_tokens_decoder={ 102: AddedToken("[UNK]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False), 103: AddedToken("[PAD]", rstrip=True, lstrip=True, single_word=False, normalized=False, special=False), 104: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), 105: AddedToken("", rstrip=False, lstrip=False, single_word=False, normalized=False, special=True), } ) { "processor_class": "Wav2Vec2BertProcessor" } Using auto half precision backend 04/28/2025 14:16:02 - INFO - __main__ - Fine-tuning model from scratch The following columns in the training set don't have a corresponding argument in `Wav2Vec2BertForCTC.forward` and have been ignored: input_length. If input_length are not expected by `Wav2Vec2BertForCTC.forward`, you can safely ignore this message. ***** Running training ***** Num examples = 1,046,515 Num Epochs = 24 Instantaneous batch size per device = 160 Total train batch size (w. parallel, distributed & accumulation) = 320 Gradient Accumulation steps = 1 Total optimization steps = 78,504 Number of trainable parameters = 605,786,026 0%| | 0/78504 [00:00