--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/chichewa_34h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-chichewa_34h results: [] --- # w2v-bert-2.0-chichewa_34h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/CHICHEWA_34H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3389 - Wer: 0.4045 - Cer: 0.1148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:----:|:---------------:|:------:|:------:| | 0.4609 | 5.6197 | 1000 | 0.7327 | 0.6746 | 0.1953 | | 0.1207 | 11.2366 | 2000 | 0.4130 | 0.4797 | 0.1341 | | 0.1104 | 16.8563 | 3000 | 0.3404 | 0.4165 | 0.1182 | | 0.0417 | 22.4732 | 4000 | 0.3389 | 0.4046 | 0.1149 | | 0.0849 | 28.0901 | 5000 | 0.3593 | 0.3860 | 0.1110 | | 0.0169 | 33.7099 | 6000 | 0.4053 | 0.3799 | 0.1086 | | 0.0625 | 39.3268 | 7000 | 0.4394 | 0.3820 | 0.1103 | | 0.0226 | 44.9465 | 8000 | 0.4477 | 0.3922 | 0.1099 | | 0.0236 | 50.5634 | 9000 | 0.4660 | 0.3855 | 0.1101 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1