--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/chichewa_34_34h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-chichewa_34_34h results: [] --- # w2v-bert-2.0-chichewa_34_34h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/CHICHEWA_34_34H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.3084 - Wer: 0.3910 - Cer: 0.1127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 1.2884 | 1.8458 | 1000 | 1.3872 | 1.0113 | 0.3808 | | 0.092 | 3.6907 | 2000 | 0.5229 | 0.5397 | 0.1527 | | 0.0604 | 5.5355 | 3000 | 0.4211 | 0.4785 | 0.1347 | | 0.2837 | 7.3804 | 4000 | 0.3645 | 0.4376 | 0.1248 | | 0.0217 | 9.2253 | 5000 | 0.3404 | 0.4469 | 0.1232 | | 0.0299 | 11.0702 | 6000 | 0.3288 | 0.4160 | 0.1173 | | 0.0162 | 12.9160 | 7000 | 0.3320 | 0.3983 | 0.1139 | | 0.0436 | 14.7608 | 8000 | 0.3125 | 0.3847 | 0.1099 | | 0.0205 | 16.6057 | 9000 | 0.3084 | 0.3910 | 0.1126 | | 0.0198 | 18.4506 | 10000 | 0.4008 | 0.4002 | 0.1135 | | 0.0516 | 20.2955 | 11000 | 0.3086 | 0.3701 | 0.1075 | | 0.0057 | 22.1404 | 12000 | 0.3458 | 0.3847 | 0.1114 | | 0.0041 | 23.9861 | 13000 | 0.3829 | 0.3899 | 0.1137 | | 0.0142 | 25.8310 | 14000 | 0.4180 | 0.4121 | 0.1168 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1