--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/chichewa_34_136h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-chichewa_34_136h results: [] --- # w2v-bert-2.0-chichewa_34_136h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/CHICHEWA_34_136H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2952 - Wer: 0.4020 - Cer: 0.1153 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 2.7429 | 0.6122 | 1000 | 2.9154 | 0.9860 | 0.8820 | | 0.1586 | 1.2241 | 2000 | 0.7989 | 0.6341 | 0.1888 | | 0.0475 | 1.8362 | 3000 | 0.7777 | 0.5725 | 0.1637 | | 0.0452 | 2.4481 | 4000 | 0.4482 | 0.5083 | 0.1482 | | 0.0387 | 3.0600 | 5000 | 0.4168 | 0.4770 | 0.1396 | | 0.0454 | 3.6722 | 6000 | 0.3792 | 0.4501 | 0.1306 | | 0.0215 | 4.2841 | 7000 | 0.3758 | 0.4564 | 0.1324 | | 0.0342 | 4.8962 | 8000 | 0.3737 | 0.4557 | 0.1298 | | 0.0243 | 5.5081 | 9000 | 0.3805 | 0.4325 | 0.1252 | | 0.0183 | 6.1200 | 10000 | 0.3490 | 0.4257 | 0.1240 | | 0.0253 | 6.7322 | 11000 | 0.3670 | 0.4185 | 0.1199 | | 0.0115 | 7.3440 | 12000 | 0.3664 | 0.4125 | 0.1207 | | 0.0141 | 7.9562 | 13000 | 0.2952 | 0.4021 | 0.1153 | | 0.0141 | 8.5681 | 14000 | 0.3231 | 0.4031 | 0.1133 | | 0.0082 | 9.1800 | 15000 | 0.3209 | 0.4000 | 0.1141 | | 0.0214 | 9.7922 | 16000 | 0.3115 | 0.3985 | 0.1134 | | 0.0146 | 10.4040 | 17000 | 0.3092 | 0.3743 | 0.1089 | | 0.0367 | 11.0159 | 18000 | 0.3207 | 0.3914 | 0.1153 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1