Model save
Browse files- README.md +83 -0
- model.safetensors +1 -1
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
license: mit
|
4 |
+
base_model: facebook/w2v-bert-2.0
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- wer
|
9 |
+
model-index:
|
10 |
+
- name: w2v-bert-2.0-chichewa_34_136h
|
11 |
+
results: []
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# w2v-bert-2.0-chichewa_34_136h
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 0.3207
|
22 |
+
- Wer: 0.3914
|
23 |
+
- Cer: 0.1153
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 3e-05
|
43 |
+
- train_batch_size: 32
|
44 |
+
- eval_batch_size: 32
|
45 |
+
- seed: 42
|
46 |
+
- gradient_accumulation_steps: 2
|
47 |
+
- total_train_batch_size: 64
|
48 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
49 |
+
- lr_scheduler_type: linear
|
50 |
+
- lr_scheduler_warmup_ratio: 0.1
|
51 |
+
- training_steps: 100000
|
52 |
+
- mixed_precision_training: Native AMP
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
57 |
+
|:-------------:|:-------:|:-----:|:---------------:|:------:|:------:|
|
58 |
+
| 2.7429 | 0.6122 | 1000 | 2.9154 | 0.9860 | 0.8820 |
|
59 |
+
| 0.1586 | 1.2241 | 2000 | 0.7989 | 0.6341 | 0.1888 |
|
60 |
+
| 0.0475 | 1.8362 | 3000 | 0.7777 | 0.5725 | 0.1637 |
|
61 |
+
| 0.0452 | 2.4481 | 4000 | 0.4482 | 0.5083 | 0.1482 |
|
62 |
+
| 0.0387 | 3.0600 | 5000 | 0.4168 | 0.4770 | 0.1396 |
|
63 |
+
| 0.0454 | 3.6722 | 6000 | 0.3792 | 0.4501 | 0.1306 |
|
64 |
+
| 0.0215 | 4.2841 | 7000 | 0.3758 | 0.4564 | 0.1324 |
|
65 |
+
| 0.0342 | 4.8962 | 8000 | 0.3737 | 0.4557 | 0.1298 |
|
66 |
+
| 0.0243 | 5.5081 | 9000 | 0.3805 | 0.4325 | 0.1252 |
|
67 |
+
| 0.0183 | 6.1200 | 10000 | 0.3490 | 0.4257 | 0.1240 |
|
68 |
+
| 0.0253 | 6.7322 | 11000 | 0.3670 | 0.4185 | 0.1199 |
|
69 |
+
| 0.0115 | 7.3440 | 12000 | 0.3664 | 0.4125 | 0.1207 |
|
70 |
+
| 0.0141 | 7.9562 | 13000 | 0.2952 | 0.4021 | 0.1153 |
|
71 |
+
| 0.0141 | 8.5681 | 14000 | 0.3231 | 0.4031 | 0.1133 |
|
72 |
+
| 0.0082 | 9.1800 | 15000 | 0.3209 | 0.4000 | 0.1141 |
|
73 |
+
| 0.0214 | 9.7922 | 16000 | 0.3115 | 0.3985 | 0.1134 |
|
74 |
+
| 0.0146 | 10.4040 | 17000 | 0.3092 | 0.3743 | 0.1089 |
|
75 |
+
| 0.0367 | 11.0159 | 18000 | 0.3207 | 0.3914 | 0.1153 |
|
76 |
+
|
77 |
+
|
78 |
+
### Framework versions
|
79 |
+
|
80 |
+
- Transformers 4.48.1
|
81 |
+
- Pytorch 2.6.0+cu124
|
82 |
+
- Datasets 3.5.0
|
83 |
+
- Tokenizers 0.21.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 2423068760
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5d7706daddab36d529263ce0c78ebe86559e96099c5d730aad82dde3a6c74eb
|
3 |
size 2423068760
|