--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - automatic-speech-recognition - CLEAR-Global/chichewa_34_102h - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-chichewa_34_102h results: [] --- # w2v-bert-2.0-chichewa_34_102h This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the CLEAR-GLOBAL/CHICHEWA_34_102H - NA dataset. It achieves the following results on the evaluation set: - Loss: 0.2991 - Wer: 0.3874 - Cer: 0.1111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - training_steps: 100000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 2.2628 | 0.7877 | 1000 | 2.6113 | 0.9981 | 0.7664 | | 0.1158 | 1.5750 | 2000 | 0.7048 | 0.6111 | 0.1786 | | 0.0535 | 2.3623 | 3000 | 0.5161 | 0.5307 | 0.1527 | | 0.0471 | 3.1497 | 4000 | 0.4501 | 0.4873 | 0.1434 | | 0.0452 | 3.9374 | 5000 | 0.4284 | 0.4806 | 0.1410 | | 0.0277 | 4.7247 | 6000 | 0.3880 | 0.4649 | 0.1387 | | 0.0441 | 5.5120 | 7000 | 0.4015 | 0.4461 | 0.1294 | | 0.0177 | 6.2993 | 8000 | 0.3798 | 0.4290 | 0.1209 | | 0.0198 | 7.0866 | 9000 | 0.3330 | 0.4027 | 0.1171 | | 0.0141 | 7.8744 | 10000 | 0.3333 | 0.4307 | 0.1213 | | 0.0237 | 8.6617 | 11000 | 0.3653 | 0.4294 | 0.1259 | | 0.014 | 9.4490 | 12000 | 0.3118 | 0.4048 | 0.1162 | | 0.0079 | 10.2363 | 13000 | 0.2991 | 0.3874 | 0.1109 | | 0.0106 | 11.0236 | 14000 | 0.3455 | 0.4008 | 0.1193 | | 0.0089 | 11.8113 | 15000 | 0.3658 | 0.4091 | 0.1249 | | 0.0068 | 12.5987 | 16000 | 0.3054 | 0.3918 | 0.1124 | | 0.007 | 13.3860 | 17000 | 0.3255 | 0.3785 | 0.1114 | | 0.0108 | 14.1733 | 18000 | 0.3393 | 0.4045 | 0.1152 | ### Framework versions - Transformers 4.48.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1