File size: 11,962 Bytes
183464b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import os
import torch
from trainer import Trainer, TrainerArgs
from TTS.config import load_config
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.models.vits import CharactersConfig, Vits, VitsArgs, VitsAudioConfig
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.managers import save_file
from tqdm import tqdm
import json
# import gdown
import tarfile
torch.set_num_threads(24)
def nemo(root_path, meta_file, **kwargs):
"""
Normalizes NeMo-style json manifest files to TTS format
"""
meta_path = os.path.join(root_path, meta_file)
items = []
with open(meta_path, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = json.loads(line)
wav_file = cols["audio_filepath"]
text = cols["text"]
speaker_name = cols["speaker_name"] if "speaker_name" in cols else "one"
language = cols["language"] if "language" in cols else ""
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name, "language": language, "root_path": root_path})
return items
def compute_embeddings(
model_path,
config_path,
output_path,
old_speakers_file=None,
old_append=False,
config_dataset_path=None,
formatter=None,
dataset_name=None,
dataset_path=None,
meta_file_train=None,
meta_file_val=None,
disable_cuda=False,
no_eval=False,
):
use_cuda = torch.cuda.is_available() and not disable_cuda
if config_dataset_path is not None:
c_dataset = load_config(config_dataset_path)
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=not no_eval)
else:
c_dataset = BaseDatasetConfig()
c_dataset.dataset_name = dataset_name
c_dataset.path = dataset_path
if meta_file_train is not None:
c_dataset.meta_file_train = meta_file_train
if meta_file_val is not None:
c_dataset.meta_file_val = meta_file_val
meta_data_train, meta_data_eval = load_tts_samples(c_dataset, eval_split=not no_eval, formatter=formatter)
if meta_data_eval is None:
samples = meta_data_train
else:
samples = meta_data_train + meta_data_eval
encoder_manager = SpeakerManager(
encoder_model_path=model_path,
encoder_config_path=config_path,
d_vectors_file_path=old_speakers_file,
use_cuda=use_cuda,
)
class_name_key = encoder_manager.encoder_config.class_name_key
# compute speaker embeddings
if old_speakers_file is not None and old_append:
speaker_mapping = encoder_manager.embeddings
else:
speaker_mapping = {}
for fields in tqdm(samples):
class_name = fields[class_name_key]
audio_file = fields["audio_file"]
embedding_key = fields["audio_unique_name"]
# Only update the speaker name when the embedding is already in the old file.
if embedding_key in speaker_mapping:
speaker_mapping[embedding_key]["name"] = class_name
continue
if old_speakers_file is not None and embedding_key in encoder_manager.clip_ids:
# get the embedding from the old file
embedd = encoder_manager.get_embedding_by_clip(embedding_key)
else:
# extract the embedding
embedd = encoder_manager.compute_embedding_from_clip(audio_file)
# create speaker_mapping if target dataset is defined
speaker_mapping[embedding_key] = {}
speaker_mapping[embedding_key]["name"] = class_name
speaker_mapping[embedding_key]["embedding"] = embedd
if speaker_mapping:
# save speaker_mapping if target dataset is defined
if os.path.isdir(output_path):
mapping_file_path = os.path.join(output_path, "speakers.pth")
else:
mapping_file_path = output_path
if os.path.dirname(mapping_file_path) != "":
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
save_file(speaker_mapping, mapping_file_path)
print("Speaker embeddings saved at:", mapping_file_path)
OUT_PATH = "yourtts_hausa"
LANG_NAME = "hausa"
ISO = "ha"
# Name of the run for the Trainer
RUN_NAME = f"YourTTS-{LANG_NAME.capitalize()}"
# If you want to do transfer learning and speedup your training you can set here the path to the CML-TTS available checkpoint that can be downloaded here: https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p
RESTORE_PATH = os.path.join(OUT_PATH, "checkpoints_yourtts_cml_tts_dataset/best_model.pth")
URL = "https://drive.google.com/u/2/uc?id=1yDCSJ1pFZQTHhL09GMbOrdjcPULApa0p"
OUTPUT_CHECKPOINTS_FILEPATH = os.path.join(OUT_PATH, "checkpoints_yourtts_cml_tts_dataset.tar.bz")
# Download the CML-TTS checkpoint if it does not exist
if not os.path.exists(RESTORE_PATH):
print(f"Downloading the CML-TTS checkpoint from {URL}")
gdown.download(url=URL, output=OUTPUT_CHECKPOINTS_FILEPATH, quiet=False, fuzzy=True)
with tarfile.open(OUTPUT_CHECKPOINTS_FILEPATH, "r:bz2") as tar:
tar.extractall(OUT_PATH)
else:
print(f"Checkpoint already exists at {RESTORE_PATH}")
# This paramter is useful to debug, it skips the training epochs and just do the evaluation and produce the test sentences
SKIP_TRAIN_EPOCH = False
# Set here the batch size to be used in training and evaluation
BATCH_SIZE = 4
# Note: If you add new datasets, please make sure that the dataset sampling rate and this parameter are matching, otherwise resample your audios
SAMPLE_RATE = 24000
# Max audio length in seconds to be used in training
MAX_AUDIO_LEN_IN_SECONDS = 11
# Min audio length in seconds to be used in training
MIN_AUDIO_LEN_IN_SECONDS = 0.8
dataset_conf = BaseDatasetConfig(
dataset_name=f"{ISO}_openbible",
meta_file_train="manifest_train.jsonl",
meta_file_val="manifest_dev.jsonl",
language=ISO,
path="data/hausa/tts_data"
)
### Extract speaker embeddings
SPEAKER_ENCODER_CHECKPOINT_PATH = (
"https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/model_se.pth.tar"
)
SPEAKER_ENCODER_CONFIG_PATH = "https://github.com/coqui-ai/TTS/releases/download/speaker_encoder_model/config_se.json"
D_VECTOR_FILES = [] # List of speaker embeddings/d-vectors to be used during the training
# Checks if the speakers embeddings are already computated, if not compute it
embeddings_file = os.path.join(dataset_conf.path, "speakers.pth")
if not os.path.isfile(embeddings_file):
print(f">>> Computing the speaker embeddings for the {dataset_conf.dataset_name} dataset")
compute_embeddings(
SPEAKER_ENCODER_CHECKPOINT_PATH,
SPEAKER_ENCODER_CONFIG_PATH,
embeddings_file,
formatter=nemo,
dataset_name=dataset_conf.dataset_name,
dataset_path=dataset_conf.path,
meta_file_train=dataset_conf.meta_file_train,
meta_file_val=dataset_conf.meta_file_val,
)
D_VECTOR_FILES.append(embeddings_file)
# Audio config used in training.
audio_config = VitsAudioConfig(
sample_rate=SAMPLE_RATE,
hop_length=256,
win_length=1024,
fft_size=1024,
mel_fmin=0.0,
mel_fmax=None,
num_mels=80,
)
# Init VITSArgs setting the arguments that are needed for the YourTTS model
model_args = VitsArgs(
spec_segment_size=62,
hidden_channels=192,
hidden_channels_ffn_text_encoder=768,
num_heads_text_encoder=2,
num_layers_text_encoder=10,
kernel_size_text_encoder=3,
dropout_p_text_encoder=0.1,
d_vector_file=D_VECTOR_FILES,
use_d_vector_file=True,
d_vector_dim=512,
speaker_encoder_model_path=SPEAKER_ENCODER_CHECKPOINT_PATH,
speaker_encoder_config_path=SPEAKER_ENCODER_CONFIG_PATH,
resblock_type_decoder="2", # In the paper, we accidentally trained the YourTTS using ResNet blocks type 2, if you like you can use the ResNet blocks type 1 like the VITS model
# Useful parameters to enable the Speaker Consistency Loss (SCL) described in the paper
use_speaker_encoder_as_loss=False,
# Useful parameters to enable multilingual training
use_language_embedding=True,
embedded_language_dim=4,
)
CHARS = ["'", 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'r', 's', 't', 'u', 'w', 'y', 'z', 'ā', 'ă', 'ū', 'ƙ', 'ɓ', 'ɗ', '’']
PUNCT = [' ', '!', ',', '.', ':', ';', '?']
TEST_SENTENCES = [
["umarnai don zaman tsarki.", "two", None, "ha"],
["wanda kuma ya faɗa mana ƙaunar da kuke yi cikin ruhu.", "one", None, "ha"],
["gama mun ji labarin bangaskiyarku a cikin yesu kiristi da kuma ƙaunar da kuke yi saboda dukan tsarkaka.", "two", None, "ha"],
]
# General training config, here you can change the batch size and others useful parameters
config = VitsConfig(
output_path=OUT_PATH,
model_args=model_args,
run_name=RUN_NAME,
project_name="YourTTS",
run_description=f"""
- YourTTS trained using the {LANG_NAME.capitalize()} OpenBible dataset.
""",
dashboard_logger="tensorboard",
logger_uri=None,
audio=audio_config,
batch_size=BATCH_SIZE,
batch_group_size=4,
eval_batch_size=BATCH_SIZE,
num_loader_workers=8,
# eval_split_max_size=256,
print_step=50,
plot_step=100,
# log_model_step=1000,
save_step=1000,
save_n_checkpoints=2,
save_checkpoints=True,
target_loss="loss_1",
print_eval=True,
compute_input_seq_cache=True,
add_blank=True,
text_cleaner="no_cleaners",
characters=CharactersConfig(
characters_class="TTS.tts.models.vits.VitsCharacters",
pad="_",
eos="&",
bos="*",
blank=None,
characters="".join(CHARS),
punctuations="".join(PUNCT),
),
phoneme_cache_path=None,
precompute_num_workers=12,
start_by_longest=True,
datasets=[dataset_conf],
cudnn_benchmark=False,
min_audio_len=int(SAMPLE_RATE * MIN_AUDIO_LEN_IN_SECONDS),
max_audio_len=SAMPLE_RATE * MAX_AUDIO_LEN_IN_SECONDS,
mixed_precision=True,
test_sentences=TEST_SENTENCES,
# Enable the weighted sampler
# use_weighted_sampler=True,
# Ensures that all speakers are seen in the training batch equally no matter how many samples each speaker has
# weighted_sampler_attrs={"language": 1.0, "speaker_name": 1.0},
# weighted_sampler_attrs={"language": 1.0},
# weighted_sampler_multipliers={
# # "speaker_name": {
# # you can force the batching scheme to give a higher weight to a certain speaker and then this speaker will appears more frequently on the batch.
# # It will speedup the speaker adaptation process. Considering the CML train dataset and "new_speaker" as the speaker name of the speaker that you want to adapt.
# # The line above will make the balancer consider the "new_speaker" as 106 speakers so 1/4 of the number of speakers present on CML dataset.
# # 'new_speaker': 106, # (CML tot. train speaker)/4 = (424/4) = 106
# # }
# },
# It defines the Speaker Consistency Loss (SCL) α to 9 like the YourTTS paper
speaker_encoder_loss_alpha=9.0,
)
# Load all the datasets samples and split traning and evaluation sets
train_samples, eval_samples = load_tts_samples(
config.datasets,
eval_split=True,
formatter=nemo,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
print(f"Loaded {len(train_samples)} train samples")
print(f"Loaded {len(eval_samples)} eval samples")
# Init the model
model = Vits.init_from_config(config)
# Init the trainer and 🚀
trainer = Trainer(
TrainerArgs(restore_path=RESTORE_PATH, skip_train_epoch=SKIP_TRAIN_EPOCH),
config,
output_path=OUT_PATH,
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
|