File size: 4,222 Bytes
edb51e6
 
 
 
 
 
 
b275ea2
edb51e6
4cfa7c5
edb51e6
94b758b
 
 
 
 
 
 
4cfa7c5
 
94b758b
 
 
4cfa7c5
 
94b758b
4cfa7c5
 
 
94b758b
013d895
4cfa7c5
013d895
4cfa7c5
b275ea2
94b758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b275ea2
94b758b
 
b275ea2
2c4eec9
 
b275ea2
94b758b
b275ea2
94b758b
 
 
 
 
 
b275ea2
94b758b
b275ea2
 
94b758b
2c4eec9
94b758b
b275ea2
 
 
94b758b
 
b275ea2
94b758b
b275ea2
 
94b758b
 
b275ea2
94b758b
b275ea2
 
94b758b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b275ea2
2c4eec9
 
 
 
 
 
 
 
b275ea2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# Model Loading and Testing Instructions

This document provides step-by-step instructions on how to load our model from the Hugging Face Hub and evaluate it on a test dataset.
The following code load and test the models on colab notebook.

---

# Step 1: Prerequisites

1. Import the required Python packages:

```python
from huggingface_hub import login
import torch
import torch.nn as nn
from transformers import RobertaForSequenceClassification, RobertaTokenizer
from torch.utils.data import Dataset, DataLoader
import pandas as pd
import numpy as np
import re
from sklearn.metrics import accuracy_score
from transformers import AutoModel, AutoTokenizer
from huggingface_hub import login
```
2. Log in by using the account (see our Ed private post & email sent to TAs, thanks!):

```python
login("Replace with the key")
```

# Step 2: Define the preprocessing and dataset clas

Run the following class and functions designed to preprocess the test data

```python
class NewsDataset(Dataset):
    def __init__(self, texts, labels, tokenizer, max_len=128):
        self.texts = texts
        self.labels = labels
        self.tokenizer = tokenizer
        self.max_len = max_len

    def __len__(self):
        return len(self.texts)

    def __getitem__(self, idx):
        text = self.texts[idx]
        label = self.labels[idx]
        encoding = self.tokenizer(
            text,
            max_length=self.max_len,
            padding="max_length",
            truncation=True,
            return_tensors="pt"
        )
        return {
            "input_ids": encoding["input_ids"].squeeze(),
            "attention_mask": encoding["attention_mask"].squeeze(),
            "labels": torch.tensor(label, dtype=torch.long)
        }

def preprocess_text(text):
    """Clean and preprocess text."""
    text = str(text)
    contractions = {
        "n't": " not",
        "'s": " is",
        "'ll": " will",
        "'ve": " have"
    }
    for contraction, expansion in contractions.items():
        text = text.replace(contraction, expansion)
    text = re.sub(r'\$\\d+\.?\\d*\s*(million|billion|trillion)?', r'$ \1', text, flags=re.IGNORECASE)
    text = re.sub(r'http\\S+', '', text)
    text = re.sub(r'-', ' ', text)
    text = text.lower()
    text = ' '.join(text.split())
    return text
```


# Step 3: Load the model and tokenizer from Hugging Face Hub
This step loads the pre-trained model and tokenizer, which are hosted on the Hugging Face Hub. 

```python
print("Loading model and tokenizer...")
REPO_NAME = "CIS5190GoGo/CustomModel" #This is where we pushed the model to
model = RobertaForSequenceClassification.from_pretrained(REPO_NAME)
tokenizer = RobertaTokenizer.from_pretrained(REPO_NAME)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
print("Model and tokenizer loaded successfully!")
```

# Step 4: Load test dataset
```python
print("Loading test data...")
test_data_path = "Replace wit your test set path" #Note: Replace with your test set path
test_data = pd.read_csv(test_data_path)
```
# Step 5: Preprocess test data
```python
X_test = test_data['title'].apply(preprocess_text).values
y_test = test_data['labels'].values
```

# Step 6: Prepare the dataset and dataloader
```python
test_dataset = NewsDataset(X_test, y_test, tokenizer)
test_loader = DataLoader(test_dataset, batch_size=16, num_workers=2)
```

# Step 7: Evaluate the model and calculate accuracy
```python
print("Evaluating the model...")
model.eval()
all_preds, all_labels = [], []

with torch.no_grad():
    for batch in test_loader:
        input_ids = batch["input_ids"].to(device)
        attention_mask = batch["attention_mask"].to(device)
        labels = batch["labels"].to(device)

        outputs = model(input_ids=input_ids, attention_mask=attention_mask)
        preds = torch.argmax(outputs.logits, dim=-1)

        all_preds.extend(preds.cpu().numpy())
        all_labels.extend(labels.cpu().numpy())

accuracy = accuracy_score(all_labels, all_preds)
print(f"Test Accuracy: {accuracy:.4f}")
```
# Expected output:
```python
Loading model and tokenizer...
Model and tokenizer loaded successfully!
Loading test data...
Evaluating the model...
Test Accuracy: 0.8500
```