File size: 1,785 Bytes
7d7b854 eee73c3 7d7b854 3e6075d 7d7b854 3e6075d 7d7b854 3e6075d 7d7b854 ef4c5ba 3e6075d 7d7b854 fc579b2 7d7b854 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base-expB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base-expB
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5255
- Accuracy: 0.8184
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.6959 | 1.0 | 29819 | 0.6482 | 0.7331 |
| 0.6137 | 2.0 | 59638 | 0.5869 | 0.7681 |
| 0.48 | 3.0 | 89457 | 0.5544 | 0.7899 |
| 0.4657 | 4.0 | 119276 | 0.5210 | 0.8109 |
| 0.3649 | 5.0 | 149095 | 0.5255 | 0.8184 |
### Framework versions
- Transformers 4.57.3
- Pytorch 2.9.1+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
|