cedricbonhomme commited on
Commit
1cefdbf
·
verified ·
1 Parent(s): 6679504

End of training

Browse files
Files changed (3) hide show
  1. README.md +21 -40
  2. emissions.csv +1 -1
  3. model.safetensors +1 -1
README.md CHANGED
@@ -1,52 +1,37 @@
1
  ---
2
- base_model: hfl/chinese-macbert-base
3
- datasets:
4
- - CIRCL/Vulnerability-CNVD
5
  library_name: transformers
6
  license: apache-2.0
7
- metrics:
8
- - accuracy
9
  tags:
10
  - generated_from_trainer
11
- - text-classification
12
- - classification
13
- - nlp
14
- - chinese
15
- - vulnerability
16
- pipeline_tag: text-classification
17
- language: zh
18
  model-index:
19
  - name: vulnerability-severity-classification-chinese-macbert-base
20
  results: []
21
  ---
22
 
23
- # VLAI: A RoBERTa-Based Model for Automated Vulnerability Severity Classification (Chinese Text)
24
-
25
- This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on the dataset [CIRCL/Vulnerability-CNVD](https://huggingface.co/datasets/CIRCL/Vulnerability-CNVD).
26
-
27
- For more information, visit the [Vulnerability-Lookup project page](https://vulnerability.circl.lu) or the [ML-Gateway GitHub repository](https://github.com/vulnerability-lookup/ML-Gateway), which demonstrates its usage in a FastAPI server.
28
 
 
29
 
 
 
 
 
30
 
31
- ## How to use
32
 
33
- You can use this model directly with the Hugging Face `transformers` library for text classification:
34
 
35
- ```python
36
- from transformers import pipeline
37
 
38
- classifier = pipeline(
39
- "text-classification",
40
- model="CIRCL/vulnerability-severity-classification-chinese-macbert-base"
41
- )
42
 
43
- # Example usage for a Chinese vulnerability description
44
- description_chinese = "TOTOLINK A3600R是中国吉翁电子(TOTOLINK)公司的一款6天线1200M无线路由器。TOTOLINK A3600R存在缓冲区溢出漏洞,该漏洞源于/cgi-bin/cstecgi.cgi文件的UploadCustomModule函数中的File参数未能正确验证输入数据的长度大小,攻击者可利用该漏洞在系统上执行任意代码或者导致拒绝服务。"
45
- result_chinese = classifier(description_chinese)
46
- print(result_chinese)
47
- # Expected output example: [{'label': '高', 'score': 0.9802}]
48
- ```
49
 
 
50
 
51
  ## Training procedure
52
 
@@ -61,19 +46,15 @@ The following hyperparameters were used during training:
61
  - lr_scheduler_type: linear
62
  - num_epochs: 5
63
 
64
- It achieves the following results on the evaluation set:
65
- - Loss: 0.6258
66
- - Accuracy: 0.7781
67
-
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
72
- | 0.5987 | 1.0 | 3511 | 0.5940 | 0.7504 |
73
- | 0.5362 | 2.0 | 7022 | 0.5571 | 0.7702 |
74
- | 0.5547 | 3.0 | 10533 | 0.5589 | 0.7784 |
75
- | 0.4246 | 4.0 | 14044 | 0.5903 | 0.7789 |
76
- | 0.3994 | 5.0 | 17555 | 0.6258 | 0.7781 |
77
 
78
 
79
  ### Framework versions
 
1
  ---
 
 
 
2
  library_name: transformers
3
  license: apache-2.0
4
+ base_model: hfl/chinese-macbert-base
 
5
  tags:
6
  - generated_from_trainer
7
+ metrics:
8
+ - accuracy
 
 
 
 
 
9
  model-index:
10
  - name: vulnerability-severity-classification-chinese-macbert-base
11
  results: []
12
  ---
13
 
14
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
15
+ should probably proofread and complete it, then remove this comment. -->
 
 
 
16
 
17
+ # vulnerability-severity-classification-chinese-macbert-base
18
 
19
+ This model is a fine-tuned version of [hfl/chinese-macbert-base](https://huggingface.co/hfl/chinese-macbert-base) on an unknown dataset.
20
+ It achieves the following results on the evaluation set:
21
+ - Loss: 0.6118
22
+ - Accuracy: 0.7832
23
 
24
+ ## Model description
25
 
26
+ More information needed
27
 
28
+ ## Intended uses & limitations
 
29
 
30
+ More information needed
 
 
 
31
 
32
+ ## Training and evaluation data
 
 
 
 
 
33
 
34
+ More information needed
35
 
36
  ## Training procedure
37
 
 
46
  - lr_scheduler_type: linear
47
  - num_epochs: 5
48
 
 
 
 
 
49
  ### Training results
50
 
51
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
52
  |:-------------:|:-----:|:-----:|:---------------:|:--------:|
53
+ | 0.5706 | 1.0 | 3511 | 0.5875 | 0.7503 |
54
+ | 0.5364 | 2.0 | 7022 | 0.5596 | 0.7702 |
55
+ | 0.5483 | 3.0 | 10533 | 0.5518 | 0.7768 |
56
+ | 0.4161 | 4.0 | 14044 | 0.5757 | 0.7838 |
57
+ | 0.351 | 5.0 | 17555 | 0.6118 | 0.7832 |
58
 
59
 
60
  ### Framework versions
emissions.csv CHANGED
@@ -1,2 +1,2 @@
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
- 2025-11-21T07:13:49,codecarbon,25ecd2bb-56f8-484e-b355-0788c100e255,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,4057.6960604824126,0.0782695276243454,1.928915484493929e-05,42.5,283.16634391516516,94.34468507766725,0.04786272477908186,0.589454613507769,0.10624428948687227,0.7435616277737229,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-71-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.5858268737793,machine,N,1.0
 
1
  timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
2
+ 2025-11-25T08:34:42,codecarbon,46016a62-72d2-48da-9d57-e6844c7b1ce7,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,3480.7599397339945,0.14822105400392685,4.2582957908684204e-05,42.5,473.86350310892067,755.7507977485657,0.04105713564181151,0.6370560410333139,0.7299889485153672,1.4081021251904928,Luxembourg,LUX,,,,Linux-6.8.0-88-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,224,Intel(R) Xeon(R) Platinum 8480+,2,2 x NVIDIA H100 NVL,6.1661,49.7498,2015.3354606628418,machine,N,1.0
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e19da926cc14a67d47ab6a3f5fa97ad6def612dc438bd82403b5102bb6720428
3
  size 409103316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e428b8772596f4fccf18f0c0da6ed2141a81dec3f9545aef270078c55eb4efa2
3
  size 409103316