Safetensors
qwen2
huiyeruzhou commited on
Commit
40a10bb
·
verified ·
1 Parent(s): 64d0b7f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +33 -1
README.md CHANGED
@@ -2,4 +2,36 @@
2
  license: apache-2.0
3
  base_model:
4
  - Qwen/Qwen2.5-14B-Instruct
5
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  license: apache-2.0
3
  base_model:
4
  - Qwen/Qwen2.5-14B-Instruct
5
+ ---
6
+
7
+ ## Model Description
8
+
9
+ The **RL-MemAgent-14B** is a part of the **MemAgent** framework, which enables Large Language Models (LLMs) to process arbitrarily long texts through end-to-end Reinforcement Learning without altering their core architecture.
10
+
11
+
12
+
13
+ ## Usage
14
+
15
+ This model is ideal for tasks requiring the understanding and processing of very long documents, such as comprehensive question answering, summarizing extensive reports, or analyzing large codebases.
16
+
17
+ For detailed instructions on how to use, evaluate, and train models within the MemAgent framework, please refer to the main [MemAgent GitHub repository](https://github.com/BytedTsinghua-SIA/MemAgent).
18
+
19
+
20
+ ## Links
21
+
22
+ * **Paper:** [https://arxiv.org/abs/2507.02259](https://arxiv.org/abs/2507.02259)
23
+ * **Blog:** [https://memagent-sialab.github.io/](https://memagent-sialab.github.io/)
24
+ * **GitHub:** [https://github.com/BytedTsinghua-SIA/MemAgent](https://github.com/BytedTsinghua-SIA/MemAgent)
25
+
26
+ ## Citation
27
+
28
+ If you find this work useful, please consider citing our paper:
29
+
30
+ ```bibtex
31
+ @article{yu2025memagent,
32
+ title={MemAgent: Reshaping Long-Context LLM with Multi-Conv RL-based Memory Agent},
33
+ author={Yu, Hongli and Chen, Tinghong and Feng, Jiangtao and Chen, Jiangjie and Dai, Weinan and Yu, Qiying and Zhang, Ya-Qin and Ma, Wei-Ying and Liu, Jingjing and Wang, Mingxuan and others},
34
+ journal={arXiv preprint arXiv:2507.02259},
35
+ year={2025}
36
+ }
37
+ ```