--- license: apache-2.0 pipeline_tag: image-text-to-text library_name: transformers tags: - SAIL --- # SAIL [\[πŸ“‚ GitHub\]](https://github.com/bytedance/SAIL) [\[πŸ“œ paper\]](https://arxiv.org/abs/2504.10462) [\[πŸš€ Quick Start\]](#quick-start) ## Introduction SAIL is a **S**ingle tr**A**nsformer model for v**I**sion and **L**anguage. It is a unified multimodal large language model (MLLM) that seamlessly integrates raw pixel encoding and language decoding within a single architecture. **​Without relying on pre-trained vision encoders**, SAIL achieves competitive performance across a wide range of vision-language tasks and demonstrates strong visual representation, rivaling state-of-the-art vision models in tasks like semantic segmentation. ## Model | Model Name | HF Link | |:----------:|:------------------------------------------------------------------:| | SAIL-7B | [πŸ€— link](https://huggingface.co/ByteDance-Seed/SAIL-7B) | ## Quick Start We provide an example code to run `SAIL`. ```python from example import * NON_VISION_TOKEN_ID = -1 PATH_TO_MODEL = "path to model" PATH_TO_TOKENIZER = "path to tokenizer" IMAGE_PATH = "path to image" PROMPT = "content of prompt" model, tokenizer = get_transformer_and_tokenizer( PATH_TO_MODEL, PATH_TO_TOKENIZER ) model = model.cuda() image_processor = lambda x: convert_image_base64_to_patches(load_image_to_base64(x), model.config.vision_patch_size, fix_res_size=None) prompt_inp = tokenizer.bos_token + '[INST] {} [/INST]'.format(PROMPT) image_path = IMAGE_PATH image_patches = image_processor(image_path) nh, nw = image_patches.shape[:2] image_tokens, image_tokens_len = prepare_image_textual_seq_norowsep(nh, nw, tokenizer, add_cls=False) input_tokens = image_tokens + prompt_inp input_ids = tokenizer(input_tokens, add_special_tokens=False, return_tensors="pt").input_ids vision_patch_indices = torch.full_like(input_ids, fill_value=NON_VISION_TOKEN_ID) vision_patches = image_patches.view(nh * nw, -1) assert (input_ids == tokenizer.vis_patch_tok_id).sum() == vision_patches.size(0) assert (input_ids >= tokenizer.vis_beg_tok_id).sum() == image_tokens_len vision_patch_indices[input_ids==tokenizer.vis_patch_tok_id] = torch.arange(vision_patches.size(0)) attention_mask = create_single_prefix_mask(image_tokens_len, input_ids.size(-1)).unsqueeze(0).unsqueeze(0) position_ids = generate_mm_pos_ids_singleit(input_ids.squeeze(0).numpy().tolist(), tokenizer.vis_patch_tok_id, nh, nw).unsqueeze(1) input_ids = input_ids.long().cuda() vision_patch_indices = vision_patch_indices.long().cuda() vision_patches = vision_patches.to(torch.bfloat16).cuda() position_ids = position_ids.long().cuda() attention_mask = attention_mask.cuda() padding_attention_mask = torch.ones_like(input_ids).cuda() inputs = dict( input_ids = input_ids, position_ids = position_ids, attention_mask = padding_attention_mask, vision_patches = vision_patches, vision_patch_indices = vision_patch_indices, use_cache=True ) cached_inputs = dict( input_ids = input_ids[:, :image_tokens_len], position_ids = position_ids[:, :, :image_tokens_len], attention_mask = attention_mask[:,:, :image_tokens_len, :image_tokens_len], vision_patches = vision_patches, vision_patch_indices = vision_patch_indices[:, :image_tokens_len], use_cache=True ) prefix_cache = DynamicCache() with torch.no_grad(): prefix_cache = model.forward(**cached_inputs, past_key_values=prefix_cache).past_key_values past_key_values = copy.deepcopy(prefix_cache) generate_config = GenerationConfig( max_new_tokens=1024, return_dict_in_generate=True, output_attentions=False ) generated = model.generate( **inputs, past_key_values=past_key_values, generation_config=generate_config ) generated_ids = generated['sequences'][:, input_ids.size(1):] response = tokenizer.batch_decode( generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False )[0] print(f"\nModel Response: ===\n{response}\n===") ``` ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{lei2025sail, title={The Scalability of Simplicity: Empirical Analysis of Vision-Language Learning with a Single Transformer}, author={Lei, Weixian and Wang, Jiacong and Wang, Haochen and Li, Xiangtai and Liew, Jun Hao and Feng, Jiashi and Huang, Zilong}, journal={arXiv preprint arXiv:2504.10462}, year={2025} } ```