End of training
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: google/canine-s
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: spellcorrector_0511_v2
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# spellcorrector_0511_v2
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1552
|
24 |
+
- Precision: 0.9703
|
25 |
+
- Recall: 0.9736
|
26 |
+
- F1: 0.9720
|
27 |
+
- Accuracy: 0.9734
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 2e-05
|
47 |
+
- train_batch_size: 4
|
48 |
+
- eval_batch_size: 4
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 25
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| 0.2251 | 1.0 | 1945 | 0.1881 | 0.9152 | 0.9603 | 0.9372 | 0.9531 |
|
59 |
+
| 0.1741 | 2.0 | 3890 | 0.1464 | 0.9391 | 0.9651 | 0.9520 | 0.9619 |
|
60 |
+
| 0.1467 | 3.0 | 5835 | 0.1302 | 0.9536 | 0.9585 | 0.9560 | 0.9645 |
|
61 |
+
| 0.1278 | 4.0 | 7780 | 0.1230 | 0.9576 | 0.9637 | 0.9606 | 0.9665 |
|
62 |
+
| 0.1158 | 5.0 | 9725 | 0.1126 | 0.9627 | 0.9651 | 0.9639 | 0.9695 |
|
63 |
+
| 0.1047 | 6.0 | 11670 | 0.1099 | 0.9638 | 0.9668 | 0.9653 | 0.9703 |
|
64 |
+
| 0.0964 | 7.0 | 13615 | 0.1090 | 0.9641 | 0.9684 | 0.9663 | 0.9712 |
|
65 |
+
| 0.0856 | 8.0 | 15560 | 0.1087 | 0.9664 | 0.9688 | 0.9676 | 0.9714 |
|
66 |
+
| 0.0778 | 9.0 | 17505 | 0.1120 | 0.9675 | 0.9679 | 0.9677 | 0.9712 |
|
67 |
+
| 0.0712 | 10.0 | 19450 | 0.1126 | 0.9664 | 0.9722 | 0.9693 | 0.9724 |
|
68 |
+
| 0.0656 | 11.0 | 21395 | 0.1144 | 0.9678 | 0.9701 | 0.9690 | 0.9718 |
|
69 |
+
| 0.0582 | 12.0 | 23340 | 0.1184 | 0.9682 | 0.9696 | 0.9689 | 0.9723 |
|
70 |
+
| 0.0532 | 13.0 | 25285 | 0.1215 | 0.9686 | 0.9712 | 0.9699 | 0.9727 |
|
71 |
+
| 0.0485 | 14.0 | 27230 | 0.1269 | 0.9697 | 0.9718 | 0.9707 | 0.9721 |
|
72 |
+
| 0.0447 | 15.0 | 29175 | 0.1293 | 0.9693 | 0.9717 | 0.9705 | 0.9727 |
|
73 |
+
| 0.039 | 16.0 | 31120 | 0.1317 | 0.9690 | 0.9719 | 0.9705 | 0.9723 |
|
74 |
+
| 0.0363 | 17.0 | 33065 | 0.1376 | 0.9689 | 0.9721 | 0.9705 | 0.9724 |
|
75 |
+
| 0.0333 | 18.0 | 35010 | 0.1396 | 0.9695 | 0.9721 | 0.9708 | 0.9721 |
|
76 |
+
| 0.0303 | 19.0 | 36955 | 0.1424 | 0.9700 | 0.9740 | 0.9720 | 0.9731 |
|
77 |
+
| 0.0274 | 20.0 | 38900 | 0.1456 | 0.9700 | 0.9734 | 0.9717 | 0.9736 |
|
78 |
+
| 0.0262 | 21.0 | 40845 | 0.1499 | 0.9692 | 0.9732 | 0.9712 | 0.9726 |
|
79 |
+
| 0.0232 | 22.0 | 42790 | 0.1522 | 0.9702 | 0.9732 | 0.9717 | 0.9733 |
|
80 |
+
| 0.0229 | 23.0 | 44735 | 0.1543 | 0.9706 | 0.9732 | 0.9719 | 0.9736 |
|
81 |
+
| 0.0214 | 24.0 | 46680 | 0.1543 | 0.9703 | 0.9738 | 0.9721 | 0.9733 |
|
82 |
+
| 0.0204 | 25.0 | 48625 | 0.1552 | 0.9703 | 0.9736 | 0.9720 | 0.9734 |
|
83 |
+
|
84 |
+
|
85 |
+
### Framework versions
|
86 |
+
|
87 |
+
- Transformers 4.35.0
|
88 |
+
- Pytorch 2.1.0+cu118
|
89 |
+
- Datasets 2.14.6
|
90 |
+
- Tokenizers 0.14.1
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 528687832
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:147812573e0d0c5497c0aaf6b88aa473cb6ce1100465e1509d8195b2cd86d2b9
|
3 |
size 528687832
|
runs/Nov05_18-52-45_702a8d08e357/events.out.tfevents.1699210366.702a8d08e357.2847.2
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafa3a98169ec7bb91664b3ed77b66316aee4f18693dd8bacbb643f326567418
|
3 |
+
size 35273
|