--- --- license: apache-2.0 datasets: - DoggiAI/GSM8K_zh_tw language: - zh - en pipeline_tag: text-generation tags: - text-generation-inference - chain-of-thought - qwen - traditional-chinese - reasoning - rlhf - grpo - cot - local-deploy library_name: transformers model_creator: BryanADA base_model: - Qwen/Qwen2.5-3B-Instruct --- # Qwen-2.5-3B-cot-zh-tw (GRPO) --- ### 模型簡介 | Model Overview 本模型基於 Qwen-2.5-3B-Instruct,專為繁體中文數學/邏輯推理場景設計,不是單純仿製長鏈推理,而是經由創新 RLHF 訓練流程,讓模型自發產生類似「aha moment」的推理能力。 訓練流程為: 1. 以少量高品質多步推理 SFT 數據冷啟動模型 2. 接著採用 GRPO 策略與自設獎勵函數,在「問題—答案」數據集下強化模型「自發推理」與「步驟合理性」,不依賴 PPO 或大規模 SFT 3. 推理長度經本地測試優化,步驟數落在最佳甜蜜點,適合部署於一般 GPU/邊緣裝置 > This model is based on Qwen-2.5-3B-Instruct and optimized for step-by-step reasoning in Traditional Chinese math and logic tasks. Instead of standard CoT SFT or PPO, we use a minimal SFT “cold start” with high-quality reasoning samples, then apply GRPO with a custom reward function to let the model discover its own “aha moments” and multi-step reasoning chains—all while controlling output length for efficient local deployment. --- ### 訓練動機 | Motivation 這個專案純粹出於個人興趣與繁體中文圈的實際需求而開發,旨在讓本地端能有更好用的推理模型。 我希望能為繁體中文圈貢獻可以本地部署的推理模型,讓模型在繁中語境下,也能自發產生多步驟、具備頓悟感(aha moment)的解題過程。 整體訓練過程強調實驗精神與實用導向:只用少量優質 SFT 冷啟動,再透過 GRPO 與自定獎勵函數,讓模型自己學會思考與拆解問題,追求可實際落地的推理效果。 > This project was developed purely out of personal interest and the practical needs of the Traditional Chinese-speaking community, with the goal of creating a more effective locally deployable reasoning model. I hope to contribute a model that enables multi-step, “aha moment” reasoning in the Traditional Chinese context—one that can be run efficiently on local hardware. The entire training process emphasizes both experimentation and real-world usability: starting with a small amount of high-quality SFT for cold start, then leveraging GRPO and custom reward functions to encourage the model to learn reasoning and problem decomposition on its own, with a focus on truly applicable step-by-step solutions. --- ### 模型特性 | Key Features Aha Moment 自發推理:非模板複製,而是訓練模型「自己發現推理步驟」 步驟最佳化:推理長度經本地實測,控制在「解題效率」與「可讀性」甜蜜點 繁體中文強化:涵蓋台灣、港澳常用語境,數學、邏輯均表現穩定 適用本地端部署:硬體需求親民,適合一般 4GB GPU,步驟控制精簡,不會無限發散 Self-generated Reasoning: Not pattern imitation—model “discovers” solution steps Optimized Step Count: Output length tuned for real-world efficiency and readability Traditional Chinese Enhanced: Robust for Taiwan/HK/Macau context and math/logic QA Local Deployment Friendly: Runs on standard consumer GPUs, with step count sweet spot --- ### 訓練細節 | Training Details 基礎模型 / Base:Qwen2.5-3B-Instruct 流程 / Pipeline:少量高品質多步推理 SFT(冷啟動)→ GRPO(自訂獎勵函數,自發推理強化) 數據來源 / Data:DoggiAI/GSM8K_zh_tw + 自建繁體推理 Q&A (From Grok API Distill) RLHF 核心:獎勵重點放在答案正確率、推理步驟合理性與精簡性,不靠人類標記每步驟 硬體 / Hardware:L4 GPU, 訓練 24 小時 框架 / Framework:Transformers, PEFT, bitsandbytes, Unsloth --- ### 使用建議 | Usage Tips 推薦應用:數學解題、邏輯題、逐步問答 適合使用類似:「請自行分步推理,說明每一步的原因。」等提示語 可將 output 步驟數量根據需求進行控制(建議 2~6 步為最佳) --- ### 快速上手 | Quickstart ```python print("Hello, world!") from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("BryanADA/qwen-2.5-3b-cot-zh-tw") tokenizer = AutoTokenizer.from_pretrained("BryanADA/qwen-2.5-3b-cot-zh-tw") prompt = "小明有 3 顆蘋果,又拿到 2 顆,一共幾顆?請分步說明推理過程。" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate( **inputs, max_new_tokens=512, do_sample=True, temperature=0.7, top_p=0.95, pad_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` --- ### 參考資料 | References Qwen 官方 Deepseek R1 論文 DoggiAI/GSM8K_zh_tw RLHF/GRPO 相關文獻 --- ### License 本模型採用 Apache-2.0 授權,允許用於研究、學術及商業用途。請遵循授權條款保留原作者版權及免責聲明。 > This model is licensed under Apache-2.0, allowing use for research, academic, and commercial purposes. Please comply with the license terms and retain the original copyright and disclaimers. ---