Amal Vinoy
commited on
Upload 8 files
Browse files- README.md +137 -0
- config.json +38 -0
- generation_config.json +7 -0
- gitattributes +36 -0
- model-00002-of-00003.safetensors +3 -0
- preprocessor_config.json +25 -0
- special_tokens_map.json +39 -0
- tokenizer_config.json +0 -0
README.md
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: image-text-to-text
|
4 |
+
license: apache-2.0
|
5 |
+
datasets:
|
6 |
+
- joshuachou/SkinCAP
|
7 |
+
- HemanthKumarK/SKINgpt
|
8 |
+
language:
|
9 |
+
- en
|
10 |
+
tags:
|
11 |
+
- biology
|
12 |
+
- skin
|
13 |
+
- skin disease
|
14 |
+
- cancer
|
15 |
+
- medical
|
16 |
+
---
|
17 |
+
# Model Card for PaliGemma Dermatology Model
|
18 |
+
|
19 |
+
## Model Details
|
20 |
+
|
21 |
+
### Model Description
|
22 |
+
|
23 |
+
This model, based on the PaliGemma-3B architecture, has been fine-tuned for dermatology-related image and text processing tasks. The model is designed to assist in the identification of various skin conditions using a combination of image analysis and natural language processing.
|
24 |
+
|
25 |
+
|
26 |
+
- **Developed by:** Bruce_Wayne
|
27 |
+
- **Model type:** vision model
|
28 |
+
- **Finetuned from model:** https://huggingface.co/google/paligemma-3b-pt-224
|
29 |
+
- **LoRa Adaptors used:** Yes
|
30 |
+
- **Intended use:** Medical image analysis, specifically for dermatology
|
31 |
+
**
|
32 |
+
### please let me know how the model works -->https://forms.gle/cBA6apSevTyiEbp46
|
33 |
+
### Thank you
|
34 |
+
## Uses
|
35 |
+
### Direct Use
|
36 |
+
|
37 |
+
The model can be directly used for analyzing dermatology images, providing insights into potential skin conditions.
|
38 |
+
|
39 |
+
|
40 |
+
## Bias, Risks, and Limitations
|
41 |
+
|
42 |
+
**Skin Tone Bias:** The model may have been trained on a dataset that does not adequately represent all skin tones, potentially leading to biased results.
|
43 |
+
**Geographic Bias:** The model's performance may vary depending on the prevalence of certain conditions in different geographic regions.
|
44 |
+
|
45 |
+
## How to Get Started with the Model
|
46 |
+
|
47 |
+
```python
|
48 |
+
|
49 |
+
import torch
|
50 |
+
from transformers import AutoProcessor, PaliGemmaForConditionalGeneration
|
51 |
+
from PIL import Image
|
52 |
+
|
53 |
+
# Load the model and processor
|
54 |
+
model_id = "brucewayne0459/paligemma_derm"
|
55 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
56 |
+
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id, device_map={"": 0})
|
57 |
+
model.eval()
|
58 |
+
|
59 |
+
# Load a sample image and text input
|
60 |
+
input_text = "Identify the skin condition?"
|
61 |
+
input_image_path = " Replace with your actual image path"
|
62 |
+
input_image = Image.open(input_image_path).convert("RGB")
|
63 |
+
|
64 |
+
# Process the input
|
65 |
+
inputs = processor(text=input_text, images=input_image, return_tensors="pt", padding="longest").to("cuda" if torch.cuda.is_available() else "cpu")
|
66 |
+
|
67 |
+
# Set the maximum length for generation
|
68 |
+
max_new_tokens = 50
|
69 |
+
|
70 |
+
# Run inference
|
71 |
+
with torch.no_grad():
|
72 |
+
outputs = model.generate(**inputs, max_new_tokens=max_new_tokens)
|
73 |
+
|
74 |
+
# Decode the output
|
75 |
+
decoded_output = processor.decode(outputs[0], skip_special_tokens=True)
|
76 |
+
print("Model Output:", decoded_output)
|
77 |
+
```
|
78 |
+
## Training Details
|
79 |
+
|
80 |
+
### Training Data
|
81 |
+
|
82 |
+
The model was fine-tuned on a dataset of dermatological images combined with disease names
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
The model was fine-tuned using LoRA (Low-Rank Adaptation) for more efficient training. Mixed precision (bfloat16) was used to speed up training and reduce memory usage.
|
87 |
+
|
88 |
+
#### Training Hyperparameters
|
89 |
+
|
90 |
+
- **Training regime:** Mixed precision (bfloat16)
|
91 |
+
- **Epochs:** 10
|
92 |
+
- **Learning rate:** 2e-5
|
93 |
+
- **Batch size:** 6
|
94 |
+
- **Gradient accumulation steps:** 4
|
95 |
+
|
96 |
+
|
97 |
+
## Evaluation
|
98 |
+
|
99 |
+
### Testing Data, Factors & Metrics
|
100 |
+
|
101 |
+
#### Testing Data
|
102 |
+
|
103 |
+
The model was evaluated on a separate validation set of dermatological images and Disease Names, distinct from the training data.
|
104 |
+
|
105 |
+
#### Metrics
|
106 |
+
- **Validation Loss:** The loss was tracked throughout the training process to evaluate model performance.
|
107 |
+
- **Accuracy:** The primary metric for assessing model predictions.
|
108 |
+
### Results
|
109 |
+
|
110 |
+
The model achieved a final validation loss of approximately 0.2214, indicating reasonable performance in predicting skin conditions based on the dataset used.
|
111 |
+
|
112 |
+
#### Summary
|
113 |
+
|
114 |
+
|
115 |
+
## Environmental Impact
|
116 |
+
|
117 |
+
|
118 |
+
- **Hardware Type:** 1 x L4 GPU
|
119 |
+
- **Hours used:** ~22 HOURS
|
120 |
+
- **Cloud Provider:** LIGHTNING AI
|
121 |
+
- **Compute Region:** USA
|
122 |
+
- **Carbon Emitted:** 0.9 kg eq. CO2
|
123 |
+
|
124 |
+
## Technical Specifications
|
125 |
+
|
126 |
+
### Model Architecture and Objective
|
127 |
+
|
128 |
+
- **Architecture:** Vision-Language model based on PaliGemma-3B
|
129 |
+
- **Objective:** To classify and diagnose dermatological conditions from images and text
|
130 |
+
|
131 |
+
### Compute Infrastructure
|
132 |
+
|
133 |
+
#### Hardware
|
134 |
+
|
135 |
+
- **GPU:** 1xL4 GPU
|
136 |
+
## Model Card Authors
|
137 |
+
Bruce_Wayne
|
config.json
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "google/paligemma-3b-pt-224",
|
3 |
+
"architectures": [
|
4 |
+
"PaliGemmaForConditionalGeneration"
|
5 |
+
],
|
6 |
+
"bos_token_id": 2,
|
7 |
+
"eos_token_id": 1,
|
8 |
+
"hidden_size": 2048,
|
9 |
+
"image_token_index": 257152,
|
10 |
+
"model_type": "paligemma",
|
11 |
+
"pad_token_id": 0,
|
12 |
+
"projection_dim": 2048,
|
13 |
+
"text_config": {
|
14 |
+
"hidden_size": 2048,
|
15 |
+
"intermediate_size": 16384,
|
16 |
+
"model_type": "gemma",
|
17 |
+
"num_attention_heads": 8,
|
18 |
+
"num_hidden_layers": 18,
|
19 |
+
"num_image_tokens": 256,
|
20 |
+
"num_key_value_heads": 1,
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"vocab_size": 257216
|
23 |
+
},
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.45.0.dev0",
|
26 |
+
"vision_config": {
|
27 |
+
"hidden_size": 1152,
|
28 |
+
"intermediate_size": 4304,
|
29 |
+
"model_type": "siglip_vision_model",
|
30 |
+
"num_attention_heads": 16,
|
31 |
+
"num_hidden_layers": 27,
|
32 |
+
"num_image_tokens": 256,
|
33 |
+
"patch_size": 14,
|
34 |
+
"projection_dim": 2048,
|
35 |
+
"projector_hidden_act": "gelu_fast",
|
36 |
+
"vision_use_head": false
|
37 |
+
}
|
38 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 2,
|
4 |
+
"eos_token_id": 1,
|
5 |
+
"pad_token_id": 0,
|
6 |
+
"transformers_version": "4.45.0.dev0"
|
7 |
+
}
|
gitattributes
ADDED
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
model-00002-of-00003.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5cfdf65953f036f1789d3f9136758620442f1a64de31372b90204466578b8c16
|
3 |
+
size 4999820608
|
preprocessor_config.json
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_convert_rgb": null,
|
3 |
+
"do_normalize": true,
|
4 |
+
"do_rescale": true,
|
5 |
+
"do_resize": true,
|
6 |
+
"image_mean": [
|
7 |
+
0.5,
|
8 |
+
0.5,
|
9 |
+
0.5
|
10 |
+
],
|
11 |
+
"image_processor_type": "SiglipImageProcessor",
|
12 |
+
"image_seq_length": 256,
|
13 |
+
"image_std": [
|
14 |
+
0.5,
|
15 |
+
0.5,
|
16 |
+
0.5
|
17 |
+
],
|
18 |
+
"processor_class": "PaliGemmaProcessor",
|
19 |
+
"resample": 3,
|
20 |
+
"rescale_factor": 0.00392156862745098,
|
21 |
+
"size": {
|
22 |
+
"height": 224,
|
23 |
+
"width": 224
|
24 |
+
}
|
25 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"additional_special_tokens": [
|
3 |
+
{
|
4 |
+
"content": "<image>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false
|
9 |
+
}
|
10 |
+
],
|
11 |
+
"bos_token": {
|
12 |
+
"content": "<bos>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false
|
17 |
+
},
|
18 |
+
"eos_token": {
|
19 |
+
"content": "<eos>",
|
20 |
+
"lstrip": false,
|
21 |
+
"normalized": false,
|
22 |
+
"rstrip": false,
|
23 |
+
"single_word": false
|
24 |
+
},
|
25 |
+
"pad_token": {
|
26 |
+
"content": "<pad>",
|
27 |
+
"lstrip": false,
|
28 |
+
"normalized": false,
|
29 |
+
"rstrip": false,
|
30 |
+
"single_word": false
|
31 |
+
},
|
32 |
+
"unk_token": {
|
33 |
+
"content": "<unk>",
|
34 |
+
"lstrip": false,
|
35 |
+
"normalized": false,
|
36 |
+
"rstrip": false,
|
37 |
+
"single_word": false
|
38 |
+
}
|
39 |
+
}
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|