Upload gradio-hed-app.py
Browse files- src/training/gradio-hed-app.py +420 -0
src/training/gradio-hed-app.py
ADDED
@@ -0,0 +1,420 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
import os
|
4 |
+
import sys
|
5 |
+
import shutil
|
6 |
+
import gradio as gr
|
7 |
+
import torch
|
8 |
+
import numpy as np
|
9 |
+
import PIL.Image
|
10 |
+
from PIL import Image
|
11 |
+
from pathlib import Path
|
12 |
+
import tkinter as tk
|
13 |
+
from tkinter import filedialog
|
14 |
+
import base64
|
15 |
+
import io
|
16 |
+
|
17 |
+
# Import the model from the provided run.py
|
18 |
+
sys.path.append(".")
|
19 |
+
from run import Network, estimate
|
20 |
+
|
21 |
+
# Global variables
|
22 |
+
processed_images = []
|
23 |
+
output_dir = None
|
24 |
+
|
25 |
+
# Custom CSS with simplified styling and taller galleries
|
26 |
+
custom_css = """
|
27 |
+
:root {
|
28 |
+
--slate-color: #3F4756;
|
29 |
+
--mustard-color: #E5B22B;
|
30 |
+
--dark-slate: #2C3241;
|
31 |
+
--light-slate: #616C7C;
|
32 |
+
--light-yellow: #F8E9B7;
|
33 |
+
--warning-red: #D64045;
|
34 |
+
}
|
35 |
+
|
36 |
+
body {
|
37 |
+
background-color: var(--slate-color) !important;
|
38 |
+
color: white !important;
|
39 |
+
}
|
40 |
+
|
41 |
+
.gradio-container {
|
42 |
+
max-width: 95% !important;
|
43 |
+
}
|
44 |
+
|
45 |
+
/* Gallery styling for taller display */
|
46 |
+
.gallery-container .svelte-1p8za3 {
|
47 |
+
height: 600px !important;
|
48 |
+
}
|
49 |
+
|
50 |
+
.construction-header {
|
51 |
+
background-color: var(--mustard-color);
|
52 |
+
color: black;
|
53 |
+
padding: 20px;
|
54 |
+
border-radius: 10px;
|
55 |
+
margin-bottom: 20px;
|
56 |
+
border: 5px solid #333;
|
57 |
+
}
|
58 |
+
|
59 |
+
button.primary {
|
60 |
+
background-color: var(--mustard-color) !important;
|
61 |
+
color: black !important;
|
62 |
+
font-weight: bold !important;
|
63 |
+
border: 2px solid black !important;
|
64 |
+
}
|
65 |
+
|
66 |
+
button {
|
67 |
+
background-color: var(--dark-slate) !important;
|
68 |
+
border: 2px solid var(--mustard-color) !important;
|
69 |
+
color: white !important;
|
70 |
+
}
|
71 |
+
|
72 |
+
.container-box {
|
73 |
+
background-color: var(--dark-slate);
|
74 |
+
border-radius: 10px;
|
75 |
+
padding: 20px;
|
76 |
+
margin-bottom: 20px;
|
77 |
+
border: 2px solid var(--mustard-color);
|
78 |
+
}
|
79 |
+
|
80 |
+
.caution-divider {
|
81 |
+
height: 15px;
|
82 |
+
background: repeating-linear-gradient(
|
83 |
+
45deg,
|
84 |
+
black,
|
85 |
+
black 10px,
|
86 |
+
var(--mustard-color) 10px,
|
87 |
+
var(--mustard-color) 20px
|
88 |
+
);
|
89 |
+
margin: 20px 0;
|
90 |
+
border-radius: 2px;
|
91 |
+
}
|
92 |
+
|
93 |
+
.info-box {
|
94 |
+
background-color: var(--light-slate);
|
95 |
+
color: white;
|
96 |
+
padding: 15px;
|
97 |
+
border-radius: 5px;
|
98 |
+
margin: 15px 0;
|
99 |
+
border-left: 5px solid var(--mustard-color);
|
100 |
+
}
|
101 |
+
|
102 |
+
.warning-box {
|
103 |
+
background-color: var(--warning-red);
|
104 |
+
color: white;
|
105 |
+
padding: 10px;
|
106 |
+
border-radius: 5px;
|
107 |
+
margin: 10px 0;
|
108 |
+
border: 2px solid black;
|
109 |
+
}
|
110 |
+
|
111 |
+
.footer {
|
112 |
+
background-color: var(--mustard-color);
|
113 |
+
color: black;
|
114 |
+
padding: 10px;
|
115 |
+
border-radius: 10px;
|
116 |
+
text-align: center;
|
117 |
+
margin-top: 20px;
|
118 |
+
border: 3px solid #333;
|
119 |
+
}
|
120 |
+
|
121 |
+
/* Construction icon styling */
|
122 |
+
.construction-icon {
|
123 |
+
display: inline-block;
|
124 |
+
font-size: 24px;
|
125 |
+
margin-right: 10px;
|
126 |
+
vertical-align: middle;
|
127 |
+
}
|
128 |
+
"""
|
129 |
+
|
130 |
+
def create_output_dir(input_dir):
|
131 |
+
"""Create an output directory based on the input directory name"""
|
132 |
+
input_path = Path(input_dir)
|
133 |
+
output_path = input_path.parent / f"{input_path.name}_hed_output"
|
134 |
+
os.makedirs(output_path, exist_ok=True)
|
135 |
+
return str(output_path)
|
136 |
+
|
137 |
+
def process_image(input_path):
|
138 |
+
"""Process a single image with HED"""
|
139 |
+
try:
|
140 |
+
# Read the image
|
141 |
+
img = PIL.Image.open(input_path)
|
142 |
+
img = img.convert("RGB")
|
143 |
+
|
144 |
+
# Resize image to 480x320 if needed (as required by the model)
|
145 |
+
orig_size = img.size
|
146 |
+
img_resized = img.resize((480, 320), PIL.Image.LANCZOS)
|
147 |
+
|
148 |
+
# Convert to tensor
|
149 |
+
img_np = np.array(img_resized)[:, :, ::-1].transpose(2, 0, 1).astype(np.float32) * (1.0 / 255.0)
|
150 |
+
ten_input = torch.FloatTensor(np.ascontiguousarray(img_np))
|
151 |
+
|
152 |
+
# Process with the model
|
153 |
+
ten_output = estimate(ten_input)
|
154 |
+
|
155 |
+
# Convert back to PIL image
|
156 |
+
output_np = (ten_output.clip(0.0, 1.0).numpy(force=True).transpose(1, 2, 0)[:, :, 0] * 255.0).astype(np.uint8)
|
157 |
+
output_img = PIL.Image.fromarray(output_np)
|
158 |
+
|
159 |
+
# Resize back to original dimensions if needed
|
160 |
+
if orig_size != (480, 320):
|
161 |
+
output_img = output_img.resize(orig_size, PIL.Image.LANCZOS)
|
162 |
+
|
163 |
+
return output_img
|
164 |
+
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Error processing {input_path}: {str(e)}")
|
167 |
+
return None
|
168 |
+
|
169 |
+
def process_folder(input_dir, output_folder=None, progress=gr.Progress()):
|
170 |
+
"""Process all images in a folder"""
|
171 |
+
global processed_images, output_dir
|
172 |
+
|
173 |
+
# Remember output directory for other functions
|
174 |
+
if not output_folder or output_folder.strip() == "":
|
175 |
+
output_dir = create_output_dir(input_dir)
|
176 |
+
else:
|
177 |
+
output_dir = output_folder
|
178 |
+
|
179 |
+
# Create dataset directory
|
180 |
+
dataset_dir = os.path.join(output_dir, "dataset")
|
181 |
+
os.makedirs(dataset_dir, exist_ok=True)
|
182 |
+
|
183 |
+
# Get all image files
|
184 |
+
valid_extensions = ['.jpg', '.jpeg', '.png', '.bmp', '.tiff', '.tif']
|
185 |
+
image_files = [
|
186 |
+
f for f in os.listdir(input_dir)
|
187 |
+
if os.path.isfile(os.path.join(input_dir, f)) and
|
188 |
+
any(f.lower().endswith(ext) for ext in valid_extensions)
|
189 |
+
]
|
190 |
+
|
191 |
+
if not image_files:
|
192 |
+
return [], [], f"⚠️ No image files found in {input_dir}"
|
193 |
+
|
194 |
+
# Initialize progress tracking
|
195 |
+
progress(0, desc="🚧 STARTING EDGE DETECTION PROCESSING 🚧")
|
196 |
+
processed_images = []
|
197 |
+
|
198 |
+
# Process each image
|
199 |
+
for i, img_file in enumerate(image_files):
|
200 |
+
input_path = os.path.join(input_dir, img_file)
|
201 |
+
|
202 |
+
# Update progress
|
203 |
+
progress((i / len(image_files)), desc=f"🔄 Processing image {i+1}/{len(image_files)}: {img_file}")
|
204 |
+
|
205 |
+
# Process the image
|
206 |
+
output_img = process_image(input_path)
|
207 |
+
if output_img is None:
|
208 |
+
continue
|
209 |
+
|
210 |
+
# Save input and output images to the dataset folder
|
211 |
+
input_copy_path = os.path.join(dataset_dir, f"input_{i:04d}{os.path.splitext(img_file)[1]}")
|
212 |
+
output_path = os.path.join(dataset_dir, f"output_{i:04d}{os.path.splitext(img_file)[1]}")
|
213 |
+
|
214 |
+
# Copy original to dataset
|
215 |
+
shutil.copy(input_path, input_copy_path)
|
216 |
+
|
217 |
+
# Save edge map to dataset
|
218 |
+
output_img.save(output_path)
|
219 |
+
|
220 |
+
# For preview, use original images (better quality)
|
221 |
+
input_thumb = Image.open(input_path)
|
222 |
+
|
223 |
+
# Add to processed images
|
224 |
+
processed_images.append((input_thumb, output_img, os.path.basename(input_path)))
|
225 |
+
|
226 |
+
# Final progress update
|
227 |
+
progress(1.0, desc="✅ PROCESSING COMPLETE")
|
228 |
+
|
229 |
+
# Return thumbnails for gallery display
|
230 |
+
input_images = [pair[0] for pair in processed_images[:8]] # First 8 input images
|
231 |
+
output_images = [pair[1] for pair in processed_images[:8]] # First 8 output images
|
232 |
+
|
233 |
+
completion_message = f"✅ CONSTRUCTION COMPLETE! \n🏗️ Processed {len(processed_images)} images \n📊 Dataset created in: {dataset_dir}\n\n(Showing first 8 images in gallery, all images saved to dataset folder)"
|
234 |
+
|
235 |
+
return input_images, output_images, completion_message
|
236 |
+
|
237 |
+
def open_folder(folder_path):
|
238 |
+
"""Open a folder in file explorer"""
|
239 |
+
if folder_path and os.path.exists(folder_path):
|
240 |
+
if sys.platform == 'win32':
|
241 |
+
os.startfile(folder_path)
|
242 |
+
elif sys.platform == 'darwin': # macOS
|
243 |
+
os.system(f'open "{folder_path}"')
|
244 |
+
else: # Linux
|
245 |
+
os.system(f'xdg-open "{folder_path}"')
|
246 |
+
return f"🔍 Opened folder: {folder_path}"
|
247 |
+
return "⚠️ Folder doesn't exist"
|
248 |
+
|
249 |
+
def browse_folder():
|
250 |
+
"""Open a folder browser dialog and return the selected path"""
|
251 |
+
root = tk.Tk()
|
252 |
+
root.withdraw() # Hide the main window
|
253 |
+
root.attributes('-topmost', True) # Make sure it appears on top
|
254 |
+
folder_path = filedialog.askdirectory()
|
255 |
+
return folder_path if folder_path else None
|
256 |
+
|
257 |
+
def view_more_images():
|
258 |
+
"""Open the output folder to view all processed images"""
|
259 |
+
global output_dir
|
260 |
+
if output_dir and os.path.exists(output_dir):
|
261 |
+
return open_folder(output_dir)
|
262 |
+
return "⚠️ No output folder available. Process images first."
|
263 |
+
|
264 |
+
# Initialize the model
|
265 |
+
print("Initializing HED model...")
|
266 |
+
model = Network().cuda().train(False)
|
267 |
+
print("Model loaded!")
|
268 |
+
|
269 |
+
# Create Gradio interface
|
270 |
+
with gr.Blocks(title="HED Edge Detection - Construction Zone", css=custom_css) as app:
|
271 |
+
# Custom Header
|
272 |
+
gr.HTML("""
|
273 |
+
<div class="construction-header">
|
274 |
+
<h1>🏗️ EDGE DETECTION CONSTRUCTION ZONE 🏗️</h1>
|
275 |
+
<p>Build perfect edge maps from your images with HED technology</p>
|
276 |
+
</div>
|
277 |
+
""")
|
278 |
+
|
279 |
+
# Main content
|
280 |
+
with gr.Row():
|
281 |
+
with gr.Column(scale=1):
|
282 |
+
# Container for controls
|
283 |
+
gr.HTML('<div class="container-box">')
|
284 |
+
gr.HTML("<h3>🔧 CONTROL PANEL 🔧</h3>")
|
285 |
+
|
286 |
+
# Caution divider
|
287 |
+
gr.HTML('<div class="caution-divider"></div>')
|
288 |
+
|
289 |
+
# Input components
|
290 |
+
gr.HTML('<span class="construction-icon">📁</span><b>PROJECT MATERIALS</b>')
|
291 |
+
input_folder = gr.Textbox(label="Input Folder", placeholder="Select your input folder")
|
292 |
+
browse_input_button = gr.Button("📂 Browse Input Folder")
|
293 |
+
|
294 |
+
gr.HTML('<div class="caution-divider"></div>')
|
295 |
+
|
296 |
+
gr.HTML('<span class="construction-icon">🔨</span><b>CONSTRUCTION OUTPUT</b>')
|
297 |
+
output_folder = gr.Textbox(label="Output Folder (optional)", placeholder="Select output destination (or leave empty)")
|
298 |
+
browse_output_button = gr.Button("📂 Browse Output Folder")
|
299 |
+
|
300 |
+
gr.HTML('<div class="caution-divider"></div>')
|
301 |
+
|
302 |
+
# Action buttons
|
303 |
+
gr.HTML('<span class="construction-icon">⚡</span><b>OPERATIONS</b>')
|
304 |
+
process_button = gr.Button("🚧 START CONSTRUCTION 🚧", elem_classes=["primary"])
|
305 |
+
|
306 |
+
with gr.Row():
|
307 |
+
open_input_button = gr.Button("🔍 View Input Site")
|
308 |
+
open_output_button = gr.Button("🔍 View Output Site")
|
309 |
+
|
310 |
+
# Add view more button
|
311 |
+
view_more_button = gr.Button("🔍 View All Processed Images")
|
312 |
+
|
313 |
+
# Status textbox
|
314 |
+
status_text = gr.Textbox(
|
315 |
+
label="CONSTRUCTION STATUS",
|
316 |
+
interactive=False,
|
317 |
+
value="🚧 Ready to build! Select folders and start construction.",
|
318 |
+
lines=5
|
319 |
+
)
|
320 |
+
|
321 |
+
gr.HTML('</div>') # Close container-box
|
322 |
+
|
323 |
+
# Info box
|
324 |
+
gr.HTML("""
|
325 |
+
<div class="info-box">
|
326 |
+
<h4>🔔 SITE INFORMATION</h4>
|
327 |
+
<ul>
|
328 |
+
<li>All edge maps will be saved directly to the dataset folder</li>
|
329 |
+
<li>Images are temporarily resized to 480x320 during processing</li>
|
330 |
+
<li>Input/output pairs are saved with matching indices for training</li>
|
331 |
+
<li>Gallery shows first 8 images - use "View All Processed Images" to see all results</li>
|
332 |
+
</ul>
|
333 |
+
</div>
|
334 |
+
""")
|
335 |
+
|
336 |
+
# Warning box
|
337 |
+
gr.HTML("""
|
338 |
+
<div class="warning-box">
|
339 |
+
<h4>⚠️ SAFETY FIRST!</h4>
|
340 |
+
<p>This operation requires CUDA to run efficiently. CPU processing will be extremely slow.</p>
|
341 |
+
</div>
|
342 |
+
""")
|
343 |
+
|
344 |
+
with gr.Column(scale=2):
|
345 |
+
# Construction site viewer with separate galleries
|
346 |
+
gr.HTML("<h3>🏗️ CONSTRUCTION SITE VIEWER 🏗️</h3>")
|
347 |
+
|
348 |
+
with gr.Row():
|
349 |
+
with gr.Column():
|
350 |
+
# Input images with taller height
|
351 |
+
input_gallery = gr.Gallery(
|
352 |
+
label="INPUT IMAGES",
|
353 |
+
show_label=True,
|
354 |
+
height=600, # Increased from 400 to 600
|
355 |
+
object_fit="contain",
|
356 |
+
elem_classes=["gallery-container"]
|
357 |
+
)
|
358 |
+
|
359 |
+
with gr.Column():
|
360 |
+
# Output images (HED) with taller height
|
361 |
+
output_gallery = gr.Gallery(
|
362 |
+
label="HED EDGE MAPS",
|
363 |
+
show_label=True,
|
364 |
+
height=600, # Increased from 400 to 600
|
365 |
+
object_fit="contain",
|
366 |
+
elem_classes=["gallery-container"]
|
367 |
+
)
|
368 |
+
|
369 |
+
# Footer
|
370 |
+
gr.HTML("""
|
371 |
+
<div class="footer">
|
372 |
+
<p>🏗️ HOLISTICALLY-NESTED EDGE DETECTION (HED) CONSTRUCTION EQUIPMENT 🏗️</p>
|
373 |
+
<p>Building better edges since 2015 | Hard Hat Area | Authorized Personnel Only</p>
|
374 |
+
</div>
|
375 |
+
""")
|
376 |
+
|
377 |
+
# Event handlers for folder selection
|
378 |
+
browse_input_button.click(
|
379 |
+
fn=browse_folder,
|
380 |
+
outputs=input_folder
|
381 |
+
)
|
382 |
+
|
383 |
+
browse_output_button.click(
|
384 |
+
fn=browse_folder,
|
385 |
+
outputs=output_folder
|
386 |
+
)
|
387 |
+
|
388 |
+
# Process button handler
|
389 |
+
process_button.click(
|
390 |
+
fn=process_folder,
|
391 |
+
inputs=[input_folder, output_folder],
|
392 |
+
outputs=[input_gallery, output_gallery, status_text]
|
393 |
+
)
|
394 |
+
|
395 |
+
# Open folder buttons
|
396 |
+
open_input_button.click(
|
397 |
+
fn=open_folder,
|
398 |
+
inputs=input_folder,
|
399 |
+
outputs=status_text
|
400 |
+
)
|
401 |
+
|
402 |
+
open_output_button.click(
|
403 |
+
fn=open_folder,
|
404 |
+
inputs=output_folder,
|
405 |
+
outputs=status_text
|
406 |
+
)
|
407 |
+
|
408 |
+
# View more images button
|
409 |
+
view_more_button.click(
|
410 |
+
fn=view_more_images,
|
411 |
+
outputs=status_text
|
412 |
+
)
|
413 |
+
|
414 |
+
if __name__ == "__main__":
|
415 |
+
# Make sure cuda is available
|
416 |
+
if not torch.cuda.is_available():
|
417 |
+
print("⚠️ WARNING: CUDA is not available. The model will run on CPU and be EXTREMELY slow.")
|
418 |
+
|
419 |
+
# Launch the app
|
420 |
+
app.launch(share=False)
|