Upload 3 files
Browse files
src/inference/cycleGANtest.py
ADDED
@@ -0,0 +1,226 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from PIL import Image
|
7 |
+
import os
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
# Generator architecture (simplified ResNet)
|
11 |
+
class ResidualBlock(nn.Module):
|
12 |
+
def __init__(self, channels):
|
13 |
+
super(ResidualBlock, self).__init__()
|
14 |
+
self.conv_block = nn.Sequential( # Changed from 'block' to 'conv_block'
|
15 |
+
nn.ReflectionPad2d(1),
|
16 |
+
nn.Conv2d(channels, channels, 3),
|
17 |
+
nn.InstanceNorm2d(channels),
|
18 |
+
nn.ReLU(inplace=True),
|
19 |
+
nn.ReflectionPad2d(1),
|
20 |
+
nn.Conv2d(channels, channels, 3),
|
21 |
+
nn.InstanceNorm2d(channels)
|
22 |
+
)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
return x + self.conv_block(x) # Changed from 'block' to 'conv_block'
|
26 |
+
|
27 |
+
class Generator(nn.Module):
|
28 |
+
def __init__(self, input_channels=3, output_channels=3, n_residual_blocks=9):
|
29 |
+
super(Generator, self).__init__()
|
30 |
+
|
31 |
+
# Initial convolution
|
32 |
+
model = [
|
33 |
+
nn.ReflectionPad2d(3),
|
34 |
+
nn.Conv2d(input_channels, 64, 7),
|
35 |
+
nn.InstanceNorm2d(64),
|
36 |
+
nn.ReLU(inplace=True)
|
37 |
+
]
|
38 |
+
|
39 |
+
# Downsampling
|
40 |
+
in_features = 64
|
41 |
+
out_features = in_features * 2
|
42 |
+
for _ in range(2):
|
43 |
+
model += [
|
44 |
+
nn.Conv2d(in_features, out_features, 3, stride=2, padding=1),
|
45 |
+
nn.InstanceNorm2d(out_features),
|
46 |
+
nn.ReLU(inplace=True)
|
47 |
+
]
|
48 |
+
in_features = out_features
|
49 |
+
out_features = in_features * 2
|
50 |
+
|
51 |
+
# Residual blocks
|
52 |
+
for _ in range(n_residual_blocks):
|
53 |
+
model += [ResidualBlock(in_features)]
|
54 |
+
|
55 |
+
# Upsampling
|
56 |
+
out_features = in_features // 2
|
57 |
+
for _ in range(2):
|
58 |
+
model += [
|
59 |
+
nn.ConvTranspose2d(in_features, out_features, 3, stride=2, padding=1, output_padding=1),
|
60 |
+
nn.InstanceNorm2d(out_features),
|
61 |
+
nn.ReLU(inplace=True)
|
62 |
+
]
|
63 |
+
in_features = out_features
|
64 |
+
out_features = in_features // 2
|
65 |
+
|
66 |
+
# Output layer
|
67 |
+
model += [
|
68 |
+
nn.ReflectionPad2d(3),
|
69 |
+
nn.Conv2d(64, output_channels, 7),
|
70 |
+
nn.Tanh()
|
71 |
+
]
|
72 |
+
|
73 |
+
self.model = nn.Sequential(*model)
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
return self.model(x)
|
77 |
+
|
78 |
+
# Image preprocessing
|
79 |
+
def preprocess_image(image_path):
|
80 |
+
image = Image.open(image_path).convert('RGB')
|
81 |
+
transform = transforms.Compose([
|
82 |
+
transforms.Resize(256),
|
83 |
+
transforms.ToTensor(),
|
84 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
85 |
+
])
|
86 |
+
return transform(image).unsqueeze(0)
|
87 |
+
|
88 |
+
# Image postprocessing
|
89 |
+
def postprocess_image(tensor):
|
90 |
+
tensor = tensor.squeeze(0).cpu()
|
91 |
+
tensor = (tensor + 1) / 2
|
92 |
+
tensor = tensor.clamp(0, 1)
|
93 |
+
tensor = tensor.permute(1, 2, 0).numpy()
|
94 |
+
return (tensor * 255).astype(np.uint8)
|
95 |
+
|
96 |
+
# Model loading
|
97 |
+
def load_model(model_path):
|
98 |
+
model = Generator()
|
99 |
+
if os.path.exists(model_path):
|
100 |
+
print(f"Loading model from {model_path}")
|
101 |
+
state_dict = torch.load(model_path, map_location='cpu')
|
102 |
+
try:
|
103 |
+
model.load_state_dict(state_dict)
|
104 |
+
except Exception as e:
|
105 |
+
print(f"Warning: {e}")
|
106 |
+
# Try loading with strict=False
|
107 |
+
model.load_state_dict(state_dict, strict=False)
|
108 |
+
print("Loaded model with strict=False")
|
109 |
+
else:
|
110 |
+
print(f"Error: Model file not found at {model_path}")
|
111 |
+
return None
|
112 |
+
model.eval()
|
113 |
+
return model
|
114 |
+
|
115 |
+
# Inference function
|
116 |
+
# Update the transform_image function to handle numpy arrays from Gradio
|
117 |
+
def transform_image(input_image, direction):
|
118 |
+
if input_image is None:
|
119 |
+
print("No input image provided")
|
120 |
+
return None
|
121 |
+
|
122 |
+
try:
|
123 |
+
# Ensure input image is RGB
|
124 |
+
if len(input_image.shape) == 2: # Grayscale
|
125 |
+
input_image = np.stack([input_image] * 3, axis=-1)
|
126 |
+
elif input_image.shape[-1] == 4: # RGBA
|
127 |
+
input_image = input_image[..., :3]
|
128 |
+
|
129 |
+
if direction == "Depth to Image":
|
130 |
+
model_path = "./checkpoints/depth2image/latest_net_G_A.pth"
|
131 |
+
else:
|
132 |
+
model_path = "./checkpoints/depth2image/latest_net_G_B.pth"
|
133 |
+
|
134 |
+
# Load model
|
135 |
+
model = load_model(model_path)
|
136 |
+
if model is None:
|
137 |
+
print(f"Failed to load model from {model_path}")
|
138 |
+
return None
|
139 |
+
|
140 |
+
# Convert numpy array to PIL Image
|
141 |
+
input_pil = Image.fromarray(input_image.astype('uint8'), 'RGB')
|
142 |
+
|
143 |
+
# Create transforms
|
144 |
+
transform = transforms.Compose([
|
145 |
+
transforms.Resize(256),
|
146 |
+
transforms.ToTensor(),
|
147 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
148 |
+
])
|
149 |
+
|
150 |
+
# Process image
|
151 |
+
input_tensor = transform(input_pil).unsqueeze(0)
|
152 |
+
|
153 |
+
# Generate output
|
154 |
+
with torch.no_grad():
|
155 |
+
output_tensor = model(input_tensor)
|
156 |
+
|
157 |
+
# Convert to image
|
158 |
+
output_image = postprocess_image(output_tensor)
|
159 |
+
|
160 |
+
return output_image
|
161 |
+
|
162 |
+
except Exception as e:
|
163 |
+
print(f"Error in transform_image: {e}")
|
164 |
+
import traceback
|
165 |
+
traceback.print_exc()
|
166 |
+
return None
|
167 |
+
|
168 |
+
# Update the Gradio interface
|
169 |
+
with gr.Blocks(title="CycleGAN Depth2Image Test", analytics_enabled=False) as demo:
|
170 |
+
gr.Markdown("## Test CycleGAN Depth2Image Model")
|
171 |
+
|
172 |
+
with gr.Row():
|
173 |
+
with gr.Column():
|
174 |
+
input_image = gr.Image(
|
175 |
+
label="Input Image",
|
176 |
+
type="numpy",
|
177 |
+
height=256,
|
178 |
+
width=256
|
179 |
+
)
|
180 |
+
direction = gr.Radio(
|
181 |
+
choices=["Depth to Image", "Image to Depth"],
|
182 |
+
value="Depth to Image",
|
183 |
+
label="Conversion Direction"
|
184 |
+
)
|
185 |
+
transform_btn = gr.Button("Transform", variant="primary")
|
186 |
+
|
187 |
+
with gr.Column():
|
188 |
+
output_image = gr.Image(
|
189 |
+
label="Generated Output",
|
190 |
+
height=256,
|
191 |
+
width=256
|
192 |
+
)
|
193 |
+
error_output = gr.Textbox(
|
194 |
+
label="Status",
|
195 |
+
interactive=False
|
196 |
+
)
|
197 |
+
|
198 |
+
# Connect components
|
199 |
+
transform_btn.click(
|
200 |
+
fn=transform_image,
|
201 |
+
inputs=[input_image, direction],
|
202 |
+
outputs=output_image
|
203 |
+
)
|
204 |
+
|
205 |
+
gr.Markdown("""
|
206 |
+
### Instructions:
|
207 |
+
1. Upload an image
|
208 |
+
2. Select conversion direction:
|
209 |
+
- "Depth to Image" converts depth maps to realistic images
|
210 |
+
- "Image to Depth" converts realistic images to depth maps
|
211 |
+
3. Click "Transform" to generate the output
|
212 |
+
|
213 |
+
Note: Input images will be resized to 256x256 pixels.
|
214 |
+
""")
|
215 |
+
|
216 |
+
if __name__ == "__main__":
|
217 |
+
# Make sure checkpoints directory exists
|
218 |
+
os.makedirs("checkpoints/depth2image", exist_ok=True)
|
219 |
+
|
220 |
+
# Launch with custom server configuration
|
221 |
+
demo.queue(max_size=5).launch(
|
222 |
+
server_name="0.0.0.0", # Allow external connections
|
223 |
+
server_port=7860, # Set specific port
|
224 |
+
show_error=True, # Show detailed errors
|
225 |
+
debug=True # Enable debug mode
|
226 |
+
)
|
src/inference/merged-discord-app.py
ADDED
@@ -0,0 +1,1194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
import sys
|
8 |
+
import os
|
9 |
+
import threading
|
10 |
+
import pyvirtualcam
|
11 |
+
from pyvirtualcam import PixelFormat
|
12 |
+
from huggingface_hub import hf_hub_download, login, upload_file
|
13 |
+
import torch.nn as nn
|
14 |
+
import time
|
15 |
+
import mss
|
16 |
+
import traceback
|
17 |
+
|
18 |
+
# Ensure required environment variables
|
19 |
+
depth_anything_path = os.getenv('DEPTH_ANYTHING_V2_PATH')
|
20 |
+
if depth_anything_path is None:
|
21 |
+
raise ValueError("Environment variable DEPTH_ANYTHING_V2_PATH is not set. Please set it to the path of Depth-Anything-V2")
|
22 |
+
sys.path.append(depth_anything_path)
|
23 |
+
from depth_anything_v2.dpt import DepthAnythingV2
|
24 |
+
|
25 |
+
# --- Global variables and constants ---
|
26 |
+
# Updated colormaps to match the dataset generator
|
27 |
+
DEPTH_COLORMAPS = {
|
28 |
+
"TURBO": cv2.COLORMAP_TURBO,
|
29 |
+
"JET": cv2.COLORMAP_JET,
|
30 |
+
"PARULA": cv2.COLORMAP_PARULA,
|
31 |
+
"HOT": cv2.COLORMAP_HOT,
|
32 |
+
"WINTER": cv2.COLORMAP_WINTER,
|
33 |
+
"RAINBOW": cv2.COLORMAP_RAINBOW,
|
34 |
+
"OCEAN": cv2.COLORMAP_OCEAN,
|
35 |
+
"SUMMER": cv2.COLORMAP_SUMMER,
|
36 |
+
"SPRING": cv2.COLORMAP_SPRING,
|
37 |
+
"COOL": cv2.COLORMAP_COOL,
|
38 |
+
"HSV": cv2.COLORMAP_HSV,
|
39 |
+
"PINK": cv2.COLORMAP_PINK,
|
40 |
+
"BONE": cv2.COLORMAP_BONE,
|
41 |
+
"VIRIDIS": cv2.COLORMAP_VIRIDIS,
|
42 |
+
"PLASMA": cv2.COLORMAP_PLASMA,
|
43 |
+
"INFERNO": cv2.COLORMAP_INFERNO,
|
44 |
+
"MAGMA": cv2.COLORMAP_MAGMA # Keeping this one from your webcam app
|
45 |
+
}
|
46 |
+
|
47 |
+
# Add these global variables to store current settings
|
48 |
+
current_colormap = "TURBO"
|
49 |
+
current_mode = "Depth to Robot"
|
50 |
+
current_model_name = "Small"
|
51 |
+
current_webcam_id = 0
|
52 |
+
current_invert_depth = False
|
53 |
+
current_input_source = "Webcam" # or "Desktop"
|
54 |
+
current_bypass_depth = False
|
55 |
+
current_blend_opacity = 0.1 # New: default opacity for blending
|
56 |
+
current_blend_enabled = False # New: option to enable/disable blending
|
57 |
+
# Add these at the top with other globals
|
58 |
+
DEPTH2ROBOT_LOCAL_PATH = './checkpoints/depth2image/latest_net_G_A.pth'
|
59 |
+
current_gan_source = "Local" # or "HuggingFace"
|
60 |
+
# At the top with other globals, add:
|
61 |
+
current_gan_input = None # Store the current GAN input for display
|
62 |
+
# First add a new global variable to track direction
|
63 |
+
current_direction = "Depth to Image" # or "Image to Depth"
|
64 |
+
|
65 |
+
# --- Device selection ---
|
66 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu'
|
67 |
+
print(f"Using device: {DEVICE}")
|
68 |
+
|
69 |
+
# Global variables for thread management
|
70 |
+
webcam_thread = None
|
71 |
+
stop_signal = False
|
72 |
+
|
73 |
+
# --- Depth-Anything-V2 Model Configurations ---
|
74 |
+
model_configs = {
|
75 |
+
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
|
76 |
+
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
|
77 |
+
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}
|
78 |
+
}
|
79 |
+
|
80 |
+
encoder2name = {
|
81 |
+
'vits': 'Small',
|
82 |
+
'vitb': 'Base',
|
83 |
+
'vitl': 'Large'
|
84 |
+
}
|
85 |
+
|
86 |
+
# Model IDs and filenames for HuggingFace Hub
|
87 |
+
DEPTH_MODEL_INFO = {
|
88 |
+
'vits': {
|
89 |
+
'repo_id': 'depth-anything/Depth-Anything-V2-Small',
|
90 |
+
'filename': 'depth_anything_v2_vits.pth'
|
91 |
+
},
|
92 |
+
'vitb': {
|
93 |
+
'repo_id': 'depth-anything/Depth-Anything-V2-Base',
|
94 |
+
'filename': 'depth_anything_v2_vitb.pth'
|
95 |
+
},
|
96 |
+
'vitl': {
|
97 |
+
'repo_id': 'depth-anything/Depth-Anything-V2-Large',
|
98 |
+
'filename': 'depth_anything_v2_vitl.pth'
|
99 |
+
}
|
100 |
+
}
|
101 |
+
|
102 |
+
# --- CycleGAN Network Architecture ---
|
103 |
+
class ResnetBlock(nn.Module):
|
104 |
+
def __init__(self, dim, padding_type='reflect', norm_layer=nn.InstanceNorm2d, use_dropout=False):
|
105 |
+
super(ResnetBlock, self).__init__()
|
106 |
+
self.conv_block = self.build_conv_block(dim, padding_type, norm_layer, use_dropout)
|
107 |
+
|
108 |
+
def build_conv_block(self, dim, padding_type, norm_layer, use_dropout):
|
109 |
+
conv_block = []
|
110 |
+
p = 0
|
111 |
+
if padding_type == 'reflect':
|
112 |
+
conv_block += [nn.ReflectionPad2d(1)]
|
113 |
+
elif padding_type == 'replicate':
|
114 |
+
conv_block += [nn.ReplicationPad2d(1)]
|
115 |
+
elif padding_type == 'zero':
|
116 |
+
p = 1
|
117 |
+
else:
|
118 |
+
raise NotImplementedError(f'padding {padding_type} is not implemented')
|
119 |
+
|
120 |
+
conv_block += [
|
121 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=p),
|
122 |
+
norm_layer(dim),
|
123 |
+
nn.ReLU(True)
|
124 |
+
]
|
125 |
+
if use_dropout:
|
126 |
+
conv_block += [nn.Dropout(0.5)]
|
127 |
+
|
128 |
+
p = 0
|
129 |
+
if padding_type == 'reflect':
|
130 |
+
conv_block += [nn.ReflectionPad2d(1)]
|
131 |
+
elif padding_type == 'replicate':
|
132 |
+
conv_block += [nn.ReplicationPad2d(1)]
|
133 |
+
elif padding_type == 'zero':
|
134 |
+
p = 1
|
135 |
+
else:
|
136 |
+
raise NotImplementedError(f'padding {padding_type} is not implemented')
|
137 |
+
|
138 |
+
conv_block += [
|
139 |
+
nn.Conv2d(dim, dim, kernel_size=3, padding=p),
|
140 |
+
norm_layer(dim)
|
141 |
+
]
|
142 |
+
|
143 |
+
return nn.Sequential(*conv_block)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
return x + self.conv_block(x)
|
147 |
+
|
148 |
+
|
149 |
+
class Generator(nn.Module):
|
150 |
+
def __init__(self, input_nc=3, output_nc=3, ngf=64, n_blocks=9, norm_layer=nn.InstanceNorm2d):
|
151 |
+
super(Generator, self).__init__()
|
152 |
+
|
153 |
+
model = [
|
154 |
+
nn.ReflectionPad2d(3),
|
155 |
+
nn.Conv2d(input_nc, ngf, kernel_size=7, padding=0),
|
156 |
+
norm_layer(ngf),
|
157 |
+
nn.ReLU(True)
|
158 |
+
]
|
159 |
+
|
160 |
+
# Downsampling
|
161 |
+
n_downsampling = 2
|
162 |
+
for i in range(n_downsampling):
|
163 |
+
mult = 2 ** i
|
164 |
+
model += [
|
165 |
+
nn.Conv2d(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
|
166 |
+
norm_layer(ngf * mult * 2),
|
167 |
+
nn.ReLU(True)
|
168 |
+
]
|
169 |
+
|
170 |
+
# Resnet blocks
|
171 |
+
mult = 2 ** n_downsampling
|
172 |
+
for i in range(n_blocks):
|
173 |
+
model += [ResnetBlock(ngf * mult, norm_layer=norm_layer)]
|
174 |
+
|
175 |
+
# Upsampling
|
176 |
+
for i in range(n_downsampling):
|
177 |
+
mult = 2 ** (n_downsampling - i)
|
178 |
+
model += [
|
179 |
+
nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1, output_padding=1),
|
180 |
+
norm_layer(int(ngf * mult / 2)),
|
181 |
+
nn.ReLU(True)
|
182 |
+
]
|
183 |
+
|
184 |
+
model += [
|
185 |
+
nn.ReflectionPad2d(3),
|
186 |
+
nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0),
|
187 |
+
nn.Tanh()
|
188 |
+
]
|
189 |
+
|
190 |
+
self.model = nn.Sequential(*model)
|
191 |
+
|
192 |
+
def forward(self, input):
|
193 |
+
return self.model(input)
|
194 |
+
|
195 |
+
|
196 |
+
# --- Global variables for model management ---
|
197 |
+
current_depth_model = None
|
198 |
+
current_encoder = None
|
199 |
+
current_gan_model = None
|
200 |
+
|
201 |
+
# --- Model paths and HuggingFace configuration ---
|
202 |
+
DEPTH2ROBOT_MODEL_PATH = './checkpoints/depth2image/latest_net_G_A.pth'
|
203 |
+
DEPTH2ROBOT_HF_REPO = 'Borcherding/depth2AnythingCycleGAN_RobotsV2' # Replace with your HF username
|
204 |
+
|
205 |
+
def download_depth_model(encoder):
|
206 |
+
"""Download the specified depth model from HuggingFace Hub"""
|
207 |
+
model_info = DEPTH_MODEL_INFO[encoder]
|
208 |
+
model_path = hf_hub_download(
|
209 |
+
repo_id=model_info['repo_id'],
|
210 |
+
filename=model_info['filename'],
|
211 |
+
local_dir='checkpoints'
|
212 |
+
)
|
213 |
+
return model_path
|
214 |
+
|
215 |
+
def load_depth_model(encoder):
|
216 |
+
"""Load the specified depth model"""
|
217 |
+
global current_depth_model, current_encoder
|
218 |
+
if current_encoder != encoder:
|
219 |
+
model_path = download_depth_model(encoder)
|
220 |
+
current_depth_model = DepthAnythingV2(**model_configs[encoder])
|
221 |
+
current_depth_model.load_state_dict(torch.load(model_path, map_location='cpu'))
|
222 |
+
current_depth_model = current_depth_model.to(DEVICE).eval()
|
223 |
+
current_encoder = encoder
|
224 |
+
return current_depth_model
|
225 |
+
|
226 |
+
def apply_colormap(depth, colormap=cv2.COLORMAP_TURBO):
|
227 |
+
"""Apply a colormap to the depth image"""
|
228 |
+
# COLORMAP_TURBO provides better visualization than COLORMAP_JET
|
229 |
+
# It has a wider color spectrum and better perceptual properties
|
230 |
+
return cv2.applyColorMap(depth, colormap)
|
231 |
+
|
232 |
+
# Modify load_gan_model to handle both directions
|
233 |
+
def load_gan_model():
|
234 |
+
global current_gan_model, current_direction
|
235 |
+
|
236 |
+
try:
|
237 |
+
print(f"\nLoading GAN model for direction: {current_direction}")
|
238 |
+
|
239 |
+
# Select correct model file
|
240 |
+
if current_direction == "Depth to Image":
|
241 |
+
model_path = './checkpoints/depth2image/latest_net_G_A.pth'
|
242 |
+
else:
|
243 |
+
model_path = './checkpoints/depth2image/latest_net_G_B.pth'
|
244 |
+
|
245 |
+
print(f"Loading from: {os.path.abspath(model_path)}")
|
246 |
+
|
247 |
+
if not os.path.exists(model_path):
|
248 |
+
print(f"Model file not found: {model_path}")
|
249 |
+
return None
|
250 |
+
|
251 |
+
# Initialize model
|
252 |
+
current_gan_model = Generator().to(DEVICE)
|
253 |
+
state_dict = torch.load(model_path, map_location=DEVICE)
|
254 |
+
|
255 |
+
try:
|
256 |
+
current_gan_model.load_state_dict(state_dict, strict=False)
|
257 |
+
print("Model loaded successfully")
|
258 |
+
except Exception as e:
|
259 |
+
print(f"Error loading state dict: {e}")
|
260 |
+
return None
|
261 |
+
|
262 |
+
current_gan_model.eval()
|
263 |
+
return "GAN model loaded successfully"
|
264 |
+
|
265 |
+
except Exception as e:
|
266 |
+
return f"Error loading GAN: {str(e)}"
|
267 |
+
|
268 |
+
def update_gan_source(source, path):
|
269 |
+
"""Update GAN model source and path"""
|
270 |
+
global current_gan_source, DEPTH2ROBOT_HF_REPO, current_gan_model, DEPTH2ROBOT_MODEL_PATH
|
271 |
+
|
272 |
+
current_gan_source = source
|
273 |
+
if source == "HuggingFace":
|
274 |
+
DEPTH2ROBOT_HF_REPO = path
|
275 |
+
else: # Local
|
276 |
+
DEPTH2ROBOT_MODEL_PATH = path # Update the model path globally
|
277 |
+
|
278 |
+
# Force reload of GAN model
|
279 |
+
current_gan_model = None
|
280 |
+
|
281 |
+
# Test loading
|
282 |
+
model = load_gan_model()
|
283 |
+
if model is not None:
|
284 |
+
return f"✅ Successfully updated GAN source to {source} using path: {path}"
|
285 |
+
else:
|
286 |
+
return "❌ Failed to load GAN model with new settings"
|
287 |
+
|
288 |
+
def toggle_invert_depth():
|
289 |
+
"""Toggle depth inversion without restarting the webcam"""
|
290 |
+
global current_invert_depth
|
291 |
+
|
292 |
+
if webcam_thread and webcam_thread.is_alive():
|
293 |
+
current_invert_depth = not current_invert_depth
|
294 |
+
orientation = "light=near, dark=far" if current_invert_depth else "dark=near, light=far"
|
295 |
+
return f"✅ Depth colors swapped: {orientation}"
|
296 |
+
else:
|
297 |
+
return "⚠️ Webcam is not running. Please start it first."
|
298 |
+
|
299 |
+
def reverse_depth_colormap():
|
300 |
+
"""Reverse the depth colormap colors without restarting the webcam"""
|
301 |
+
global current_invert_depth
|
302 |
+
|
303 |
+
if webcam_thread and webcam_thread.is_alive():
|
304 |
+
current_invert_depth = not current_invert_depth
|
305 |
+
orientation = "dark=near, light=far" if current_invert_depth else "light=near, dark=far"
|
306 |
+
return f"✅ Depth colors reversed: {orientation}"
|
307 |
+
else:
|
308 |
+
return "⚠️ Webcam is not running. Please start it first."
|
309 |
+
|
310 |
+
def blend_images(original, depth, opacity=0.1):
|
311 |
+
"""
|
312 |
+
Blend original image with depth map
|
313 |
+
original: Top layer (webcam/desktop)
|
314 |
+
depth: Bottom layer (depth map)
|
315 |
+
opacity: 0.0 = depth only, 1.0 = original only
|
316 |
+
"""
|
317 |
+
# Convert inputs to numpy arrays if needed
|
318 |
+
if not isinstance(original, np.ndarray):
|
319 |
+
original = np.array(original)
|
320 |
+
if not isinstance(depth, np.ndarray):
|
321 |
+
depth = np.array(depth)
|
322 |
+
|
323 |
+
# Ensure both images are float32 for blending
|
324 |
+
original = original.astype(np.float32)
|
325 |
+
depth = depth.astype(np.float32)
|
326 |
+
|
327 |
+
# Reverse the opacity interpretation for consistency with the UI
|
328 |
+
# (0 = depth only, 1 = original/webcam only)
|
329 |
+
blended = depth * (1 - opacity) + original * opacity
|
330 |
+
|
331 |
+
# Clip values and convert back to uint8
|
332 |
+
blended = np.clip(blended, 0, 255).astype(np.uint8)
|
333 |
+
|
334 |
+
return blended
|
335 |
+
|
336 |
+
def toggle_blend_enabled():
|
337 |
+
"""Toggle blending without restarting the webcam"""
|
338 |
+
global current_blend_enabled
|
339 |
+
|
340 |
+
if webcam_thread and webcam_thread.is_alive():
|
341 |
+
current_blend_enabled = not current_blend_enabled
|
342 |
+
status = "enabled" if current_blend_enabled else "disabled"
|
343 |
+
return f"✅ Image blending {status}"
|
344 |
+
else:
|
345 |
+
return "⚠️ Webcam is not running. Please start it first."
|
346 |
+
|
347 |
+
def update_blend_opacity(opacity):
|
348 |
+
"""Update the blend opacity without restarting the webcam"""
|
349 |
+
global current_blend_opacity
|
350 |
+
|
351 |
+
if webcam_thread and webcam_thread.is_alive():
|
352 |
+
current_blend_opacity = opacity
|
353 |
+
return f"✅ Updated blend opacity to {opacity:.1f}"
|
354 |
+
else:
|
355 |
+
return "⚠️ Webcam is not running. Please start it first."
|
356 |
+
|
357 |
+
@torch.inference_mode()
|
358 |
+
def predict_depth(image, encoder, invert_depth=None):
|
359 |
+
"""Predict depth using the selected model with pure output"""
|
360 |
+
model = load_depth_model(encoder)
|
361 |
+
depth = model.infer_image(image)
|
362 |
+
|
363 |
+
# Linear normalization to 0-255 range without enhancing contrast
|
364 |
+
depth = depth - depth.min()
|
365 |
+
max_val = depth.max()
|
366 |
+
if (max_val > 0): # Avoid division by zero
|
367 |
+
depth = (depth / max_val * 255.0)
|
368 |
+
|
369 |
+
# Convert to uint8 without any additional processing
|
370 |
+
depth = depth.astype(np.uint8)
|
371 |
+
|
372 |
+
# Simple inversion if requested
|
373 |
+
if invert_depth:
|
374 |
+
depth = 255 - depth
|
375 |
+
|
376 |
+
return depth
|
377 |
+
|
378 |
+
@torch.inference_mode()
|
379 |
+
def depth_to_robot(depth_image):
|
380 |
+
"""Convert depth image to robot image using CycleGAN"""
|
381 |
+
try:
|
382 |
+
model = load_gan_model()
|
383 |
+
if model is None:
|
384 |
+
print("No GAN model loaded!")
|
385 |
+
return depth_image
|
386 |
+
|
387 |
+
print(f"Input shape: {depth_image.shape}, dtype: {depth_image.dtype}")
|
388 |
+
|
389 |
+
# Ensure input is in correct format
|
390 |
+
if depth_image.dtype != np.uint8:
|
391 |
+
depth_image = depth_image.astype(np.uint8)
|
392 |
+
|
393 |
+
# Normalize to [-1, 1] range for GAN
|
394 |
+
depth_tensor = torch.from_numpy(depth_image).float().permute(2, 0, 1).unsqueeze(0)
|
395 |
+
depth_tensor = (depth_tensor / 127.5) - 1.0
|
396 |
+
|
397 |
+
print(f"Tensor shape: {depth_tensor.shape}, device: {depth_tensor.device}")
|
398 |
+
|
399 |
+
# Process through GAN
|
400 |
+
depth_tensor = depth_tensor.to(DEVICE)
|
401 |
+
with torch.no_grad():
|
402 |
+
robot_tensor = model(depth_tensor)
|
403 |
+
|
404 |
+
print(f"Output tensor shape: {robot_tensor.shape}")
|
405 |
+
|
406 |
+
# Convert back to image (0-255 range)
|
407 |
+
robot_tensor = (robot_tensor + 1.0) * 127.5
|
408 |
+
robot_image = robot_tensor[0].permute(1, 2, 0).cpu().numpy().astype(np.uint8)
|
409 |
+
|
410 |
+
return robot_image
|
411 |
+
except Exception as e:
|
412 |
+
print(f"Error in depth_to_robot: {e}")
|
413 |
+
traceback.print_exc()
|
414 |
+
return depth_image
|
415 |
+
|
416 |
+
def toggle_depth_bypass():
|
417 |
+
"""Toggle depth map bypass"""
|
418 |
+
global current_bypass_depth
|
419 |
+
|
420 |
+
if webcam_thread and webcam_thread.is_alive():
|
421 |
+
current_bypass_depth = not current_bypass_depth
|
422 |
+
status = "enabled" if current_bypass_depth else "disabled"
|
423 |
+
return f"✅ Depth bypass {status}"
|
424 |
+
else:
|
425 |
+
return "⚠️ Webcam is not running. Please start it first."
|
426 |
+
|
427 |
+
def process_frame(frame, encoder, use_gan=True, colormap="WINTER"):
|
428 |
+
"""Process a single frame matching the test app's pattern"""
|
429 |
+
global current_invert_depth, current_bypass_depth, current_blend_enabled
|
430 |
+
global current_blend_opacity, current_gan_input, current_direction, current_gan_model
|
431 |
+
|
432 |
+
try:
|
433 |
+
# Convert frame to RGB
|
434 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
435 |
+
|
436 |
+
# Load GAN model if not loaded
|
437 |
+
if use_gan and current_gan_model is None:
|
438 |
+
current_gan_model = load_gan_model()
|
439 |
+
if current_gan_model is None:
|
440 |
+
print("Failed to load GAN model, falling back to depth only")
|
441 |
+
use_gan = False
|
442 |
+
|
443 |
+
if current_direction == "Depth to Image":
|
444 |
+
# First get depth map
|
445 |
+
depth = predict_depth(frame_rgb, encoder, invert_depth=current_invert_depth)
|
446 |
+
|
447 |
+
# Apply colormap to depth
|
448 |
+
selected_colormap = DEPTH_COLORMAPS.get(colormap, cv2.COLORMAP_WINTER)
|
449 |
+
depth_colored = cv2.applyColorMap(depth, selected_colormap)
|
450 |
+
|
451 |
+
# Apply blending if enabled
|
452 |
+
if current_blend_enabled:
|
453 |
+
depth_colored = blend_images(frame_rgb, depth_colored, current_blend_opacity)
|
454 |
+
|
455 |
+
# Store the input we're sending to GAN
|
456 |
+
current_gan_input = depth_colored.copy()
|
457 |
+
|
458 |
+
if use_gan and current_gan_model is not None:
|
459 |
+
try:
|
460 |
+
# Convert to PIL and process like in test app
|
461 |
+
input_pil = Image.fromarray(depth_colored)
|
462 |
+
transform = transforms.Compose([
|
463 |
+
transforms.Resize(256),
|
464 |
+
transforms.ToTensor(),
|
465 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
466 |
+
])
|
467 |
+
input_tensor = transform(input_pil).unsqueeze(0)
|
468 |
+
|
469 |
+
# Process through GAN
|
470 |
+
input_tensor = input_tensor.to(DEVICE)
|
471 |
+
with torch.no_grad():
|
472 |
+
output_tensor = current_gan_model(input_tensor)
|
473 |
+
|
474 |
+
# Convert back using same post-processing as test app
|
475 |
+
output_tensor = output_tensor.squeeze(0).cpu()
|
476 |
+
output_tensor = (output_tensor + 1) / 2
|
477 |
+
output_tensor = output_tensor.clamp(0, 1)
|
478 |
+
output_tensor = output_tensor.permute(1, 2, 0).numpy()
|
479 |
+
processed = (output_tensor * 255).astype(np.uint8)
|
480 |
+
except Exception as e:
|
481 |
+
print(f"Error processing through GAN: {e}")
|
482 |
+
processed = depth_colored
|
483 |
+
else:
|
484 |
+
processed = depth_colored
|
485 |
+
|
486 |
+
else: # Image to Depth
|
487 |
+
# Store original as GAN input
|
488 |
+
current_gan_input = frame_rgb.copy()
|
489 |
+
|
490 |
+
if use_gan:
|
491 |
+
# Process like test app
|
492 |
+
input_pil = Image.fromarray(frame_rgb)
|
493 |
+
transform = transforms.Compose([
|
494 |
+
transforms.Resize(256),
|
495 |
+
transforms.ToTensor(),
|
496 |
+
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
497 |
+
])
|
498 |
+
input_tensor = transform(input_pil).unsqueeze(0)
|
499 |
+
|
500 |
+
input_tensor = input_tensor.to(DEVICE)
|
501 |
+
with torch.no_grad():
|
502 |
+
output_tensor = current_gan_model(input_tensor)
|
503 |
+
|
504 |
+
output_tensor = output_tensor.squeeze(0).cpu()
|
505 |
+
output_tensor = (output_tensor + 1) / 2
|
506 |
+
output_tensor = output_tensor.clamp(0, 1)
|
507 |
+
output_tensor = output_tensor.permute(1, 2, 0).numpy()
|
508 |
+
processed = (output_tensor * 255).astype(np.uint8)
|
509 |
+
else:
|
510 |
+
processed = frame_rgb
|
511 |
+
|
512 |
+
except Exception as e:
|
513 |
+
print(f"Error in processing: {e}")
|
514 |
+
traceback.print_exc()
|
515 |
+
processed = frame
|
516 |
+
|
517 |
+
return processed
|
518 |
+
|
519 |
+
def virtual_webcam_stream(encoder, use_gan=True, webcam_id=0):
|
520 |
+
"""Stream depth display or robot conversion to virtual webcam with dynamic colormap changes"""
|
521 |
+
global current_colormap, current_input_source, current_gan_input, current_gan_model
|
522 |
+
|
523 |
+
try:
|
524 |
+
# First, ensure GAN model is loaded if needed
|
525 |
+
if use_gan and current_gan_model is None:
|
526 |
+
result = load_gan_model()
|
527 |
+
if isinstance(result, str) and "successfully" not in result.lower():
|
528 |
+
print("Failed to load GAN model, falling back to depth only")
|
529 |
+
use_gan = False
|
530 |
+
|
531 |
+
# Initialize webcam
|
532 |
+
cap = None
|
533 |
+
if current_input_source == "Webcam":
|
534 |
+
cap = cv2.VideoCapture(int(webcam_id))
|
535 |
+
if not cap.isOpened():
|
536 |
+
raise RuntimeError(f"Failed to open webcam {webcam_id}")
|
537 |
+
print(f"Successfully opened webcam {webcam_id}")
|
538 |
+
|
539 |
+
# Initialize screen capture if using desktop
|
540 |
+
sct = None
|
541 |
+
if current_input_source == "Desktop":
|
542 |
+
sct = mss.mss()
|
543 |
+
monitor = sct.monitors[1]
|
544 |
+
|
545 |
+
# Try different virtual camera backends in order of preference
|
546 |
+
cam = None
|
547 |
+
backends = ['droidcam', 'unity', 'obs'] # Changed order to try droidcam first
|
548 |
+
errors = []
|
549 |
+
|
550 |
+
for backend in backends:
|
551 |
+
try:
|
552 |
+
cam = pyvirtualcam.Camera(
|
553 |
+
width=640,
|
554 |
+
height=480,
|
555 |
+
fps=30,
|
556 |
+
fmt=PixelFormat.BGR,
|
557 |
+
backend=backend,
|
558 |
+
device='/dev/video2' if backend == 'v4l2' else None # For Linux
|
559 |
+
)
|
560 |
+
print(f'Successfully initialized virtual camera using {backend} backend')
|
561 |
+
break
|
562 |
+
except Exception as e:
|
563 |
+
errors.append(f'{backend} error: {str(e)}')
|
564 |
+
continue
|
565 |
+
|
566 |
+
if cam is None:
|
567 |
+
raise RuntimeError("Failed to initialize any virtual camera backend:\n" +
|
568 |
+
"\n".join(errors) +
|
569 |
+
"\nPlease install OBS Virtual Camera or another compatible virtual camera.")
|
570 |
+
|
571 |
+
print(f'Using virtual camera: {cam.device}')
|
572 |
+
print(f'Mode: {"Depth to Robot" if use_gan else "Depth Only"}')
|
573 |
+
print(f'Input Source: {current_input_source}')
|
574 |
+
|
575 |
+
frame_count = 0
|
576 |
+
last_time = time.time()
|
577 |
+
fps = 0
|
578 |
+
|
579 |
+
while not stop_signal:
|
580 |
+
try:
|
581 |
+
# Get frame based on input source
|
582 |
+
if current_input_source == "Webcam":
|
583 |
+
ret, frame = cap.read()
|
584 |
+
if not ret:
|
585 |
+
print("Failed to get frame from webcam")
|
586 |
+
time.sleep(0.1) # Add small delay before retry
|
587 |
+
continue
|
588 |
+
else: # Desktop
|
589 |
+
frame = get_screen_capture()
|
590 |
+
|
591 |
+
# Calculate FPS
|
592 |
+
frame_count += 1
|
593 |
+
if frame_count % 30 == 0:
|
594 |
+
current_time = time.time()
|
595 |
+
fps = 30 / (current_time - last_time)
|
596 |
+
last_time = current_time
|
597 |
+
print(f"FPS: {fps:.1f}")
|
598 |
+
|
599 |
+
# Resize frame to match virtual camera resolution
|
600 |
+
frame = cv2.resize(frame, (640, 480))
|
601 |
+
|
602 |
+
# Process the frame
|
603 |
+
processed = process_frame(frame, encoder, use_gan, current_colormap)
|
604 |
+
|
605 |
+
# Add GAN input preview if available
|
606 |
+
if current_gan_input is not None and use_gan:
|
607 |
+
preview_width = 160
|
608 |
+
preview_height = 120
|
609 |
+
preview = cv2.resize(current_gan_input, (preview_width, preview_height))
|
610 |
+
|
611 |
+
y_offset = 10
|
612 |
+
x_offset = processed.shape[1] - preview_width - 10
|
613 |
+
|
614 |
+
# Create a copy for modification
|
615 |
+
output = processed.copy()
|
616 |
+
|
617 |
+
# Add semi-transparent black background
|
618 |
+
overlay = np.zeros((preview_height + 2, preview_width + 2, 3), dtype=np.uint8)
|
619 |
+
alpha = 0.7
|
620 |
+
output[y_offset-1:y_offset+preview_height+1,
|
621 |
+
x_offset-1:x_offset+preview_width+1] = cv2.addWeighted(
|
622 |
+
output[y_offset-1:y_offset+preview_height+1,
|
623 |
+
x_offset-1:x_offset+preview_width+1],
|
624 |
+
1 - alpha,
|
625 |
+
overlay,
|
626 |
+
alpha,
|
627 |
+
0
|
628 |
+
)
|
629 |
+
|
630 |
+
# Add the preview
|
631 |
+
output[y_offset:y_offset+preview_height,
|
632 |
+
x_offset:x_offset+preview_width] = preview
|
633 |
+
|
634 |
+
processed = output
|
635 |
+
|
636 |
+
# Send to virtual camera
|
637 |
+
cam.send(processed)
|
638 |
+
cam.sleep_until_next_frame()
|
639 |
+
|
640 |
+
except Exception as e:
|
641 |
+
print(f"Error processing frame: {e}")
|
642 |
+
traceback.print_exc()
|
643 |
+
time.sleep(0.1) # Add delay before retry
|
644 |
+
continue
|
645 |
+
|
646 |
+
# Cleanup
|
647 |
+
if cap is not None:
|
648 |
+
cap.release()
|
649 |
+
if sct is not None:
|
650 |
+
sct.close()
|
651 |
+
|
652 |
+
except Exception as e:
|
653 |
+
print(f"Critical error in virtual_webcam_stream: {e}")
|
654 |
+
traceback.print_exc()
|
655 |
+
return False
|
656 |
+
|
657 |
+
return True
|
658 |
+
|
659 |
+
def toggle_input_source():
|
660 |
+
"""Toggle between webcam and desktop capture"""
|
661 |
+
global current_input_source, webcam_thread, stop_signal
|
662 |
+
|
663 |
+
# Stop current stream
|
664 |
+
if webcam_thread and webcam_thread.is_alive():
|
665 |
+
stop_signal = True
|
666 |
+
webcam_thread.join(timeout=1.0)
|
667 |
+
|
668 |
+
# Toggle source
|
669 |
+
current_input_source = "Desktop" if current_input_source == "Webcam" else "Webcam"
|
670 |
+
|
671 |
+
# Restart stream if it was running
|
672 |
+
if webcam_thread:
|
673 |
+
return start_webcam_thread(
|
674 |
+
current_model_name,
|
675 |
+
current_mode,
|
676 |
+
current_webcam_id,
|
677 |
+
current_colormap
|
678 |
+
)
|
679 |
+
|
680 |
+
return f"✅ Switched to {current_input_source} input"
|
681 |
+
|
682 |
+
def get_screen_capture():
|
683 |
+
"""Capture the desktop screen"""
|
684 |
+
import mss
|
685 |
+
sct = mss.mss()
|
686 |
+
monitor = sct.monitors[1] # Primary monitor
|
687 |
+
screenshot = np.array(sct.grab(monitor))
|
688 |
+
return cv2.cvtColor(screenshot, cv2.COLOR_BGRA2BGR)
|
689 |
+
|
690 |
+
def verify_model_path():
|
691 |
+
"""Verify the GAN model file exists"""
|
692 |
+
model_path = './checkpoints/depth2image/latest_net_G_A.pth'
|
693 |
+
if not os.path.exists(model_path):
|
694 |
+
print(f"Model file not found at: {model_path}")
|
695 |
+
print("Current working directory:", os.getcwd())
|
696 |
+
return False
|
697 |
+
return True
|
698 |
+
|
699 |
+
# Add this check before starting the webcam:
|
700 |
+
def start_webcam_thread(model_name, mode, webcam_id=0, colormap="TURBO"):
|
701 |
+
global webcam_thread, stop_signal, current_colormap, current_mode
|
702 |
+
global current_model_name, current_webcam_id, current_direction
|
703 |
+
|
704 |
+
# Verify model exists if using GAN
|
705 |
+
if mode != "Depth Only" and not verify_model_path():
|
706 |
+
return "❌ GAN model file not found! Please check the model path."
|
707 |
+
|
708 |
+
# Update current settings
|
709 |
+
current_colormap = colormap
|
710 |
+
current_mode = mode
|
711 |
+
current_model_name = model_name
|
712 |
+
current_webcam_id = webcam_id
|
713 |
+
|
714 |
+
# Set direction based on mode
|
715 |
+
if mode == "Depth to Image":
|
716 |
+
current_direction = "Depth to Image"
|
717 |
+
elif mode == "Image to Depth":
|
718 |
+
current_direction = "Image to Depth"
|
719 |
+
|
720 |
+
# If a thread is already running, stop it
|
721 |
+
if webcam_thread and webcam_thread.is_alive():
|
722 |
+
stop_signal = True
|
723 |
+
webcam_thread.join(timeout=1.0)
|
724 |
+
|
725 |
+
# Reset stop signal
|
726 |
+
stop_signal = False
|
727 |
+
|
728 |
+
# Start new thread
|
729 |
+
encoder = {v: k for k, v in encoder2name.items()}[model_name]
|
730 |
+
use_gan = (mode != "Depth Only")
|
731 |
+
|
732 |
+
webcam_thread = threading.Thread(
|
733 |
+
target=virtual_webcam_stream,
|
734 |
+
args=(encoder, use_gan, int(webcam_id)),
|
735 |
+
daemon=True
|
736 |
+
)
|
737 |
+
webcam_thread.start()
|
738 |
+
|
739 |
+
return f"✅ Started virtual webcam: {mode} with {model_name} model using {colormap} colormap"
|
740 |
+
|
741 |
+
def update_colormap(colormap):
|
742 |
+
"""Update the colormap without restarting the webcam"""
|
743 |
+
global current_colormap
|
744 |
+
|
745 |
+
if webcam_thread and webcam_thread.is_alive():
|
746 |
+
current_colormap = colormap
|
747 |
+
return f"✅ Updated colormap to {colormap}"
|
748 |
+
else:
|
749 |
+
return "⚠️ Webcam is not running. Please start it first."
|
750 |
+
|
751 |
+
def stop_webcam():
|
752 |
+
"""Stop the webcam thread"""
|
753 |
+
global webcam_thread, stop_signal
|
754 |
+
|
755 |
+
if webcam_thread and webcam_thread.is_alive():
|
756 |
+
stop_signal = True
|
757 |
+
webcam_thread.join(timeout=1.0)
|
758 |
+
return "✅ Webcam stopped"
|
759 |
+
else:
|
760 |
+
return "No webcam is running"
|
761 |
+
|
762 |
+
def set_device_mode(choice):
|
763 |
+
"""Set the device to use for model inference"""
|
764 |
+
global DEVICE
|
765 |
+
if choice == "Auto":
|
766 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
767 |
+
elif choice == "CUDA":
|
768 |
+
DEVICE = 'cuda'
|
769 |
+
else:
|
770 |
+
DEVICE = 'cpu'
|
771 |
+
|
772 |
+
# Reset loaded models to ensure they're on the correct device
|
773 |
+
global current_depth_model, current_gan_model
|
774 |
+
current_depth_model = None
|
775 |
+
current_gan_model = None
|
776 |
+
|
777 |
+
return f"Device set to: {DEVICE}"
|
778 |
+
|
779 |
+
def test_gan_model():
|
780 |
+
"""Test if the GAN model loads and runs correctly"""
|
781 |
+
try:
|
782 |
+
# Try loading the model to verify it works
|
783 |
+
model = load_gan_model()
|
784 |
+
if model is None:
|
785 |
+
return "❌ Failed to load GAN model. Check console for errors."
|
786 |
+
|
787 |
+
# Create a simple test tensor
|
788 |
+
test_input = torch.zeros(1, 3, 64, 64).to(DEVICE)
|
789 |
+
|
790 |
+
# Try running inference
|
791 |
+
with torch.no_grad():
|
792 |
+
output = model(test_input)
|
793 |
+
|
794 |
+
return f"✅ GAN model loaded and tested successfully on {DEVICE}!"
|
795 |
+
except Exception as e:
|
796 |
+
return f"❌ Error testing GAN model: {str(e)}"
|
797 |
+
|
798 |
+
def upload_to_huggingface(hf_token, repo_name=None):
|
799 |
+
"""Upload the GAN model to HuggingFace"""
|
800 |
+
if not repo_name:
|
801 |
+
repo_name = DEPTH2ROBOT_HF_REPO
|
802 |
+
|
803 |
+
if not os.path.exists(DEPTH2ROBOT_MODEL_PATH):
|
804 |
+
return "❌ Model file not found. Please make sure it exists at: ./checkpoints/depth2image/latest_net_G.pth"
|
805 |
+
|
806 |
+
try:
|
807 |
+
# Login to HuggingFace
|
808 |
+
login(token=hf_token)
|
809 |
+
|
810 |
+
# Upload the model file
|
811 |
+
upload_info = upload_file(
|
812 |
+
path_or_fileobj=DEPTH2ROBOT_MODEL_PATH,
|
813 |
+
path_in_repo="latest_net_G.pth",
|
814 |
+
repo_id=repo_name,
|
815 |
+
repo_type="model",
|
816 |
+
create_pr=False
|
817 |
+
)
|
818 |
+
|
819 |
+
# Create a simple model card if it doesn't exist
|
820 |
+
model_card = """---
|
821 |
+
tags:
|
822 |
+
- depth-to-robot
|
823 |
+
- image-to-image
|
824 |
+
- cyclegan
|
825 |
+
---
|
826 |
+
|
827 |
+
# Depth2Robot GAN Model
|
828 |
+
|
829 |
+
This model transforms depth maps into robot-style images using CycleGAN.
|
830 |
+
|
831 |
+
## Model Description
|
832 |
+
|
833 |
+
- This model was trained on depth maps and robot images.
|
834 |
+
- It converts grayscale depth maps to colorful robot-style imagery.
|
835 |
+
- Trained using CycleGAN architecture.
|
836 |
+
|
837 |
+
## Usage
|
838 |
+
|
839 |
+
```python
|
840 |
+
import torch
|
841 |
+
from huggingface_hub import hf_hub_download
|
842 |
+
|
843 |
+
# Download the model
|
844 |
+
model_path = hf_hub_download(repo_id="{repo_name}", filename="latest_net_G.pth")
|
845 |
+
|
846 |
+
# Load the model (you need to define the Generator class)
|
847 |
+
model = Generator()
|
848 |
+
model.load_state_dict(torch.load(model_path), strict=False)
|
849 |
+
model.eval()
|
850 |
+
|
851 |
+
# Use the model for inference
|
852 |
+
# ...
|
853 |
+
```
|
854 |
+
""".format(repo_name=repo_name)
|
855 |
+
|
856 |
+
# Create a temporary model card file
|
857 |
+
with open("./README.md", "w") as f:
|
858 |
+
f.write(model_card)
|
859 |
+
|
860 |
+
# Upload the model card
|
861 |
+
upload_file(
|
862 |
+
path_or_fileobj="./README.md",
|
863 |
+
path_in_repo="README.md",
|
864 |
+
repo_id=repo_name,
|
865 |
+
repo_type="model",
|
866 |
+
create_pr=False
|
867 |
+
)
|
868 |
+
|
869 |
+
# Clean up
|
870 |
+
os.remove("./README.md")
|
871 |
+
|
872 |
+
return f"✅ Successfully uploaded model to HuggingFace!\n\nYou can view it at: https://huggingface.co/{repo_name}"
|
873 |
+
except Exception as e:
|
874 |
+
return f"❌ Error uploading to HuggingFace: {e}"
|
875 |
+
|
876 |
+
def toggle_mode():
|
877 |
+
"""Quick toggle between Depth Only and Depth to Robot modes"""
|
878 |
+
global current_mode
|
879 |
+
if webcam_thread and webcam_thread.is_alive():
|
880 |
+
current_mode = "Depth Only" if current_mode == "Depth to Robot" else "Depth to Robot"
|
881 |
+
return start_webcam_thread(
|
882 |
+
current_model_name,
|
883 |
+
current_mode,
|
884 |
+
current_webcam_id,
|
885 |
+
current_colormap
|
886 |
+
)
|
887 |
+
return "⚠️ Webcam is not running. Please start it first."
|
888 |
+
|
889 |
+
def update_gan_preview():
|
890 |
+
"""Update the GAN input preview"""
|
891 |
+
global current_gan_input
|
892 |
+
if current_gan_input is not None:
|
893 |
+
return current_gan_input
|
894 |
+
return None
|
895 |
+
|
896 |
+
def test_webcams():
|
897 |
+
"""Test available webcams"""
|
898 |
+
available_cams = []
|
899 |
+
for i in range(10): # Test first 10 indices
|
900 |
+
cap = cv2.VideoCapture(i)
|
901 |
+
if cap.isOpened():
|
902 |
+
ret, _ = cap.read()
|
903 |
+
if ret:
|
904 |
+
available_cams.append(i)
|
905 |
+
cap.release()
|
906 |
+
return available_cams
|
907 |
+
|
908 |
+
def stop_gan():
|
909 |
+
"""Stop the GAN processing"""
|
910 |
+
global current_gan_model
|
911 |
+
if current_gan_model is not None:
|
912 |
+
current_gan_model = None
|
913 |
+
return "✅ GAN processing stopped"
|
914 |
+
return "GAN was not running"
|
915 |
+
|
916 |
+
# --- Gradio UI ---
|
917 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="purple")) as demo:
|
918 |
+
gr.Markdown("# 🤖 Depth Anything V2 to Robot Virtual Webcam for Discord")
|
919 |
+
|
920 |
+
with gr.Row():
|
921 |
+
with gr.Column(scale=2):
|
922 |
+
with gr.Group():
|
923 |
+
gr.Markdown("### 📹 Webcam Settings")
|
924 |
+
|
925 |
+
# First define the status box that will be used in connections
|
926 |
+
webcam_status = gr.Textbox(
|
927 |
+
label="Status",
|
928 |
+
placeholder="Not started",
|
929 |
+
interactive=False
|
930 |
+
)
|
931 |
+
|
932 |
+
with gr.Row():
|
933 |
+
with gr.Column(scale=1):
|
934 |
+
model_dropdown = gr.Dropdown(
|
935 |
+
choices=list(encoder2name.values()),
|
936 |
+
value="Small",
|
937 |
+
label="Depth Model Size",
|
938 |
+
info="Smaller = faster, larger = more detailed"
|
939 |
+
)
|
940 |
+
|
941 |
+
with gr.Column(scale=1):
|
942 |
+
mode_dropdown = gr.Dropdown(
|
943 |
+
choices=["Depth Only", "Depth to Image", "Image to Depth"],
|
944 |
+
value="Depth to Image",
|
945 |
+
label="Output Mode",
|
946 |
+
info="Select conversion direction or depth visualization"
|
947 |
+
)
|
948 |
+
|
949 |
+
# Add in the UI section after mode_dropdown
|
950 |
+
with gr.Column(scale=1):
|
951 |
+
gan_source_radio = gr.Radio(
|
952 |
+
choices=["Local", "HuggingFace"],
|
953 |
+
value="Local",
|
954 |
+
label="GAN Model Source",
|
955 |
+
info="Choose between local model or download from HuggingFace"
|
956 |
+
)
|
957 |
+
gan_path = gr.Textbox(
|
958 |
+
value=DEPTH2ROBOT_LOCAL_PATH,
|
959 |
+
label="Local GAN Path/HF Repo",
|
960 |
+
info="Local path or HuggingFace repo name"
|
961 |
+
)
|
962 |
+
with gr.Column(scale=1):
|
963 |
+
colormap_dropdown = gr.Dropdown(
|
964 |
+
choices=list(DEPTH_COLORMAPS.keys()),
|
965 |
+
value="TURBO",
|
966 |
+
label="Depth Colormap",
|
967 |
+
info="Color scheme for depth visualization"
|
968 |
+
)
|
969 |
+
|
970 |
+
with gr.Row():
|
971 |
+
update_colormap_button = gr.Button("Update Colormap", variant="secondary")
|
972 |
+
reverse_depth_button = gr.Button("Reverse Depth Colors", variant="secondary")
|
973 |
+
bypass_depth_button = gr.Button("Toggle Depth Bypass", variant="secondary")
|
974 |
+
toggle_invert_button = gr.Button("Toggle Depth Inversion", variant="secondary")
|
975 |
+
|
976 |
+
webcam_id = gr.Number(
|
977 |
+
value=0,
|
978 |
+
label="Webcam ID",
|
979 |
+
info="Usually 0 for built-in webcam, try 1 or 2 for external cameras",
|
980 |
+
precision=0
|
981 |
+
)
|
982 |
+
|
983 |
+
with gr.Row():
|
984 |
+
start_button = gr.Button("▶️ Start Webcam", variant="primary", scale=2)
|
985 |
+
stop_button = gr.Button("⏹️ Stop Webcam", variant="stop", scale=1)
|
986 |
+
|
987 |
+
with gr.Row():
|
988 |
+
quick_mode_toggle = gr.Button("🔄 Toggle Depth/Robot Mode", variant="primary")
|
989 |
+
input_source_button = gr.Button("🔄 Toggle Webcam/Desktop", variant="secondary")
|
990 |
+
|
991 |
+
webcam_status = gr.Textbox(
|
992 |
+
label="Status",
|
993 |
+
placeholder="Not started",
|
994 |
+
interactive=False
|
995 |
+
)
|
996 |
+
|
997 |
+
with gr.Group():
|
998 |
+
gr.Markdown("### 🎨 Blending Settings")
|
999 |
+
|
1000 |
+
with gr.Row():
|
1001 |
+
blend_enabled_toggle = gr.Checkbox(
|
1002 |
+
label="Enable Blending",
|
1003 |
+
value=False,
|
1004 |
+
info="Blend original video on top of depth map"
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
blend_opacity_slider = gr.Slider(
|
1008 |
+
minimum=0.0,
|
1009 |
+
maximum=1.0,
|
1010 |
+
value=0.1,
|
1011 |
+
step=0.1,
|
1012 |
+
label="Blend Opacity",
|
1013 |
+
info="0 = Depth only, 1 = Camera only"
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
with gr.Row():
|
1017 |
+
update_blend_button = gr.Button("Update Blend Settings", variant="secondary")
|
1018 |
+
|
1019 |
+
# Testing section
|
1020 |
+
with gr.Group():
|
1021 |
+
gr.Markdown("### 🧪 Test Your GAN Model")
|
1022 |
+
test_button = gr.Button("🧪 Test GAN Model", variant="secondary")
|
1023 |
+
test_output = gr.Textbox(label="Test Results", interactive=False)
|
1024 |
+
|
1025 |
+
# Right column
|
1026 |
+
with gr.Column(scale=1):
|
1027 |
+
with gr.Group():
|
1028 |
+
gr.Markdown("### ⚙️ Advanced Settings")
|
1029 |
+
|
1030 |
+
device_radio = gr.Radio(
|
1031 |
+
choices=["Auto", "CUDA", "CPU"],
|
1032 |
+
value="Auto",
|
1033 |
+
label="Device Selection",
|
1034 |
+
info="Use CPU if you experience GPU errors"
|
1035 |
+
)
|
1036 |
+
|
1037 |
+
device_output = gr.Textbox(
|
1038 |
+
label="Device Status",
|
1039 |
+
value=f"Current device: {DEVICE}",
|
1040 |
+
interactive=False
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
device_radio.change(fn=set_device_mode, inputs=device_radio, outputs=device_output)
|
1044 |
+
|
1045 |
+
with gr.Group():
|
1046 |
+
gr.Markdown("### 🚀 Upload to HuggingFace")
|
1047 |
+
|
1048 |
+
hf_token = gr.Textbox(
|
1049 |
+
label="HuggingFace API Token",
|
1050 |
+
placeholder="hf_...",
|
1051 |
+
type="password",
|
1052 |
+
info="Get your token from huggingface.co/settings/tokens"
|
1053 |
+
)
|
1054 |
+
|
1055 |
+
repo_name = gr.Textbox(
|
1056 |
+
label="Repository Name",
|
1057 |
+
placeholder=f"username/depth2robot-model",
|
1058 |
+
info="Format: username/repo-name"
|
1059 |
+
)
|
1060 |
+
|
1061 |
+
upload_button = gr.Button("📤 Upload Model", variant="secondary")
|
1062 |
+
upload_result = gr.Textbox(label="Upload Result", interactive=False)
|
1063 |
+
|
1064 |
+
with gr.Group():
|
1065 |
+
gr.Markdown("### 🎥 Test Webcams")
|
1066 |
+
test_webcams_button = gr.Button("Scan for Webcams")
|
1067 |
+
webcams_output = gr.Textbox(label="Available Webcams", interactive=False)
|
1068 |
+
|
1069 |
+
# Connect UI elements to functions - MOVED ALL CONNECTIONS HERE
|
1070 |
+
start_button.click(
|
1071 |
+
fn=start_webcam_thread,
|
1072 |
+
inputs=[model_dropdown, mode_dropdown, webcam_id, colormap_dropdown],
|
1073 |
+
outputs=webcam_status
|
1074 |
+
)
|
1075 |
+
|
1076 |
+
stop_button.click(fn=stop_webcam, inputs=[], outputs=webcam_status)
|
1077 |
+
|
1078 |
+
# Add this with the other connections near the bottom of the file
|
1079 |
+
update_colormap_button.click(
|
1080 |
+
fn=update_colormap,
|
1081 |
+
inputs=colormap_dropdown,
|
1082 |
+
outputs=webcam_status
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# Add with other connections
|
1086 |
+
input_source_button.click(
|
1087 |
+
fn=toggle_input_source,
|
1088 |
+
inputs=[],
|
1089 |
+
outputs=webcam_status
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
# Add this with the other connections near the bottom of the file
|
1093 |
+
blend_enabled_toggle.change(
|
1094 |
+
fn=toggle_blend_enabled,
|
1095 |
+
inputs=[],
|
1096 |
+
outputs=webcam_status
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
# Add this with the other connections near the bottom of the file
|
1100 |
+
update_blend_button.click(
|
1101 |
+
fn=update_blend_opacity,
|
1102 |
+
inputs=blend_opacity_slider,
|
1103 |
+
outputs=webcam_status
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# Add the toggle invert button connection here
|
1107 |
+
reverse_depth_button.click(
|
1108 |
+
fn=reverse_depth_colormap,
|
1109 |
+
inputs=[],
|
1110 |
+
outputs=webcam_status
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
# Add with other connections
|
1114 |
+
gan_source_radio.change(
|
1115 |
+
fn=update_gan_source,
|
1116 |
+
inputs=[gan_source_radio, gan_path],
|
1117 |
+
outputs=webcam_status
|
1118 |
+
)
|
1119 |
+
|
1120 |
+
test_button.click(fn=test_gan_model, inputs=[], outputs=test_output)
|
1121 |
+
|
1122 |
+
# Add this with the other connections near the bottom of the file
|
1123 |
+
upload_button.click(
|
1124 |
+
fn=upload_to_huggingface,
|
1125 |
+
inputs=[hf_token, repo_name],
|
1126 |
+
outputs=upload_result
|
1127 |
+
)
|
1128 |
+
|
1129 |
+
# Add this with the other connections near the bottom of the file
|
1130 |
+
quick_mode_toggle.click(
|
1131 |
+
fn=toggle_mode,
|
1132 |
+
inputs=[],
|
1133 |
+
outputs=webcam_status
|
1134 |
+
)
|
1135 |
+
|
1136 |
+
# Add this with the other connections near the bottom of the file
|
1137 |
+
test_webcams_button.click(
|
1138 |
+
fn=test_webcams,
|
1139 |
+
inputs=[],
|
1140 |
+
outputs=webcams_output
|
1141 |
+
)
|
1142 |
+
|
1143 |
+
# Add to the connections section with the other button connections:
|
1144 |
+
bypass_depth_button.click(
|
1145 |
+
fn=toggle_depth_bypass,
|
1146 |
+
inputs=[],
|
1147 |
+
outputs=webcam_status
|
1148 |
+
)
|
1149 |
+
|
1150 |
+
# In the Gradio UI section, add this button:
|
1151 |
+
with gr.Row():
|
1152 |
+
stop_gan_button = gr.Button("⏹️ Stop GAN", variant="stop")
|
1153 |
+
|
1154 |
+
# Add the connection:
|
1155 |
+
stop_gan_button.click(
|
1156 |
+
fn=stop_gan,
|
1157 |
+
inputs=[],
|
1158 |
+
outputs=webcam_status
|
1159 |
+
)
|
1160 |
+
|
1161 |
+
# Add to the UI:
|
1162 |
+
with gr.Row():
|
1163 |
+
gan_status = gr.Textbox(
|
1164 |
+
label="GAN Status",
|
1165 |
+
value="Not loaded",
|
1166 |
+
interactive=False
|
1167 |
+
)
|
1168 |
+
|
1169 |
+
# Help section
|
1170 |
+
with gr.Accordion("Help & Troubleshooting", open=False):
|
1171 |
+
gr.Markdown("""
|
1172 |
+
## Common Issues
|
1173 |
+
|
1174 |
+
### Model not loading
|
1175 |
+
- Make sure your model file is in `./checkpoints/depth2image/latest_net_G.pth`
|
1176 |
+
- Try using the "Test GAN Model" button to check if it loads correctly
|
1177 |
+
- If you see errors about missing keys, the model structure is different - this script uses `strict=False` to load it anyway
|
1178 |
+
|
1179 |
+
### Virtual camera not showing in Discord
|
1180 |
+
- Make sure OBS Virtual Camera is installed
|
1181 |
+
- Try stopping and starting the webcam
|
1182 |
+
- Restart Discord after starting the virtual camera
|
1183 |
+
|
1184 |
+
### Performance issues
|
1185 |
+
- Use the "Small" depth model for better performance
|
1186 |
+
- Try the "CPU" device option if you're having GPU memory issues
|
1187 |
+
""")
|
1188 |
+
|
1189 |
+
if __name__ == "__main__":
|
1190 |
+
# Make sure the checkpoints directory exists
|
1191 |
+
os.makedirs("checkpoints/depth2image", exist_ok=True)
|
1192 |
+
|
1193 |
+
# Launch the Gradio interface
|
1194 |
+
demo.launch()
|
src/training/trainDepth2AnythingGAN.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|