# coding=utf-8 # Copyright 2021 Google AI, Ross Wightman, The HuggingFace Inc. team. All rights reserved. # Copyright 2025 The Authors of Revisiting Residual Connections. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch OrthoViT model. From Revisiting Residual Connections: Orthogonal Residual Connections for Vision Transformers. preprint arXiv:2505.11881 Authors: Giyeong Oh, Woohyun Cho, Siyeol Kim, Suhwan Choi, Younjae Yu """ import collections.abc import math from typing import Dict, List, Optional, Set, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.activations import ACT2FN from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPooling, ImageClassifierOutput, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import logging, auto_docstring from transformers.models.vit.modeling_vit import ViTEmbeddings, ViTPatchEmbeddings, ViTSelfAttention, ViTSelfOutput, ViTAttention, ViTIntermediate, ViTPooler # Use HF implementations for these # Assuming connect.py is in the same directory # from .connect import connect # For use as a package # For standalone script, you might need to adjust import path or ensure connect.py is findable logger = logging.get_logger(__name__) try: from .residual import connect except ImportError: logger.warning("residual.py not found, using fallback linear connect function.") def connect(x, f_x, *args, **kwargs): # Linear connection fallback """ Fallback connection function if connect.py is not available. This will simply add the input x to the function output f_x. This is a simple linear connection, not orthogonal. """ return x + f_x from .configuration_ortho_vit import OrthoViTConfig # Changed from ViTConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "OrthoViTConfig" # Copied from transformers.models.vit.modeling_vit.ViTOutput # with the residual connection modified to use the `connect` function. class OrthoViTOutput(nn.Module): def __init__(self, config: OrthoViTConfig) -> None: super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) # Orthogonal connection parameters are stored in config and passed to connect self.config = config # Register buffer for eps, ensuring it's on the correct device and non-persistent self.register_buffer("residual_eps", torch.tensor([config.residual_eps], dtype=torch.float32), persistent=False) def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor, residual_input: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) # Use the connect function for the residual connection # The 'input_tensor' to ViTOutput is the output of the intermediate layer. # The 'residual_input' is the output of the attention block (hidden_states before layernorm_after). hidden_states = connect( x=residual_input, f_x=hidden_states, eps=self.residual_eps, **self.config.residual_kwargs ) return hidden_states class OrthoViTLayer(nn.Module): """This corresponds to the Block class in the timm implementation.""" def __init__(self, config: OrthoViTConfig) -> None: super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = ViTAttention(config) # Standard HF ViTAttention self.intermediate = ViTIntermediate(config) # Standard HF ViTIntermediate # self.output = ViTOutput(config) # Standard HF ViTOutput self.output = OrthoViTOutput(config) # Use OrthoViTOutput for the second residual connection self.layernorm_before = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=config.elementwise_affine_ln) self.layernorm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps, elementwise_affine=config.elementwise_affine_ln) self.config = config # Register buffer for eps, ensuring it's on the correct device and non-persistent self.register_buffer("residual_eps", torch.tensor([config.residual_eps], dtype=torch.float32), persistent=False) self.residual_kwargs = self.config.residual_kwargs # Use the config's residual_kwargs def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, ) -> Union[Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor]]: # Input to Attention block normed_hidden_states = self.layernorm_before(hidden_states) self_attention_outputs = self.attention( normed_hidden_states, head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] # Output of ViTAttention (includes SelfAttention + SelfOutput) outputs = self_attention_outputs[1:] # add self attentions if we output attention weights # First residual connection (after Attention) # The `connect` function expects the module output (f_x) and the stream input (x) # Here, hidden_states is x, and attention_output is f_x from the attention block hidden_states = connect( x=hidden_states, f_x=attention_output, eps=self.residual_eps, # Use the buffer **self.residual_kwargs ) # MLP block # In ViT, layernorm is also applied after self-attention (and first residual) # This `hidden_states` is now `x_{n+1}` from the attention block mlp_input = self.layernorm_after(hidden_states) intermediate_output = self.intermediate(mlp_input) # Second residual connection (after MLP) is handled by OrthoViTOutput # `hidden_states` is the residual stream input to the MLP's residual connection # `intermediate_output` is the direct output of the MLP's main path (before adding to residual) layer_output = self.output(intermediate_output, mlp_input, hidden_states) # mlp_input here is just for consistency with ViTOutput's original signature, OrthoViTOutput will use residual_input outputs = (layer_output,) + outputs return outputs class OrthoViTEncoder(nn.Module): def __init__(self, config: OrthoViTConfig) -> None: super().__init__() self.config = config self.layer = nn.ModuleList([OrthoViTLayer(config) for _ in range(config.num_hidden_layers)]) # Use OrthoViTLayer self.gradient_checkpointing = False def forward( self, hidden_states: torch.Tensor, head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, output_hidden_states: bool = False, return_dict: bool = True, ) -> Union[tuple, BaseModelOutput]: all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None if self.gradient_checkpointing and self.training: layer_outputs = self._gradient_checkpointing_func( layer_module.__call__, hidden_states, layer_head_mask, output_attentions, ) else: layer_outputs = layer_module(hidden_states, layer_head_mask, output_attentions) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) # @add_start_docstrings( # "The bare ViT MAE transformer outputting raw hidden-states without any specific head on top.", # # VIT_START_DOCSTRING, # OrthoViT is custom # ) # @auto_docstring class OrthoViTPreTrainedModel(PreTrainedModel): # Copied from ViTPreTrainedModel config_class = OrthoViTConfig # Use OrthoViTConfig base_model_prefix = "vit" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["ViTEmbeddings", "OrthoViTLayer"] # Use OrthoViTLayer _supports_sdpa = True # Inherit from ViT _supports_flash_attn_2 = True # Inherit from ViT def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): if module.elementwise_affine: # Only init if affine module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, ViTEmbeddings): # Standard ViTEmbeddings init module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) module.cls_token.data = nn.init.trunc_normal_( module.cls_token.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.cls_token.dtype) VIT_START_DOCSTRING = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`OrthoViTConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ VIT_INPUTS_DOCSTRING = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`] for details. head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. interpolate_pos_encoding (`bool`, *optional*): Whether to interpolate the positional encoding if the input image resolution is different from the one used during pre-training. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ # @add_start_docstrings( # "The bare OrthoViT transformer outputting raw hidden-states without any specific head on top.", # VIT_START_DOCSTRING, # ) # @auto_docstring class OrthoViTModel(OrthoViTPreTrainedModel): def __init__(self, config: OrthoViTConfig, add_pooling_layer: bool = True, use_mask_token: bool = False): super().__init__(config) self.config = config self.embeddings = ViTEmbeddings(config, use_mask_token=use_mask_token) self.encoder = OrthoViTEncoder(config) # Use OrthoViTEncoder self.layernorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) # No affine self.pooler = ViTPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self) -> ViTPatchEmbeddings: return self.embeddings.patch_embeddings def _prune_heads(self, heads_to_prune: Dict[int, List[int]]) -> None: """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) # @add_start_docstrings_to_model_forward(VIT_INPUTS_DOCSTRING) # @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) # @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, bool_masked_pos: Optional[torch.BoolTensor] = None, # For MAE head_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, BaseModelOutputWithPooling]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) expected_dtype = self.embeddings.patch_embeddings.projection.weight.dtype if pixel_values.dtype != expected_dtype: pixel_values = pixel_values.to(expected_dtype) embedding_output = self.embeddings( pixel_values, bool_masked_pos=bool_masked_pos, interpolate_pos_encoding=interpolate_pos_encoding ) encoder_outputs = self.encoder( embedding_output, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] sequence_output = self.layernorm(sequence_output) # Final LayerNorm pooled_output = self.pooler(sequence_output) if self.pooler is not None else None if not return_dict: head_outputs = (sequence_output, pooled_output) if pooled_output is not None else (sequence_output,) return head_outputs + encoder_outputs[1:] return BaseModelOutputWithPooling( last_hidden_state=sequence_output, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) # @auto_docstring( # """ # OrthoViT Model transformer with an image classification head on top (a linear layer on top of the final hidden state of # the [CLS] token) e.g. for ImageNet. # """ # ) class OrthoViTForImageClassification(OrthoViTPreTrainedModel): def __init__(self, config: OrthoViTConfig) -> None: super().__init__(config) self.num_labels = config.num_labels self.vit = OrthoViTModel(config, add_pooling_layer=False) # Use OrthoViTModel # Classifier head (standard HF: just a Linear layer) # The author's original classifier was nn.Sequential(nn.LayerNorm(dim), nn.Linear(dim, num_classes)) # The OrthoViTModel's output (CLS token) is already layernormed by self.vit.layernorm. # So, if that self.vit.layernorm corresponds to the author's classifier.0 (LayerNorm), # then this classifier head should just be Linear. # If an *additional* LN is needed on the CLS token, this needs to be nn.Sequential. self.classifier = nn.Linear(config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() # @auto_docstring def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, ImageClassifierOutput]: return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.vit( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] # Takes the CLS token representation for classification logits = self.classifier(sequence_output[:, 0, :]) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = ["OrthoViTConfig", "OrthoViTModel", "OrthoViTForImageClassification", "OrthoViTPreTrainedModel"]